cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061150 a(n) = Sum_{d|n} d*prime(d).

This page as a plain text file.
%I A061150 #19 Jun 24 2018 08:59:07
%S A061150 2,8,17,36,57,101,121,188,224,353,343,573,535,729,777,1036,1005,1406,
%T A061150 1275,1801,1669,2087,1911,2861,2482,3167,3005,3753,3163,4541,3939,
%U A061150 5228,4879,5737,5391,7314,5811,7475,7063,8873,7341,9957,8215,10607,9849
%N A061150 a(n) = Sum_{d|n} d*prime(d).
%H A061150 Seiichi Manyama, <a href="/A061150/b061150.txt">Table of n, a(n) for n = 1..10000</a>
%F A061150 Equals M * V, where M = A127093 as an infinite lower triangular matrix and V = A000040, the sequence of primes as a vector. E.g., a(4) = 36 = 1*2 + 2*3 + 4*7, where (1, 2, 0, 4) = row 4 of A127093 and 2, 3 and 7 are p(1), p(2), p(4). - _Gary W. Adamson_, Jan 11 2007
%F A061150 L.g.f.: log(Product_{k>=1} 1/(1 - x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n. - _Ilya Gutkovskiy_, May 10 2017
%e A061150 a(4)=36 because the divisors of 4 are 1,2,4 and 1*p(1) + 2*p(2) + 4*p(4) = 1*2 + 2*3 + 4*7 = 36.
%p A061150 with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(div[j]*ithprime(div[j]),j=1..tau(n)) end: seq(a(n),n=1..55); # _Emeric Deutsch_, Jan 20 2007
%o A061150 (PARI) a(n) = sumdiv(n, d, d*prime(d)); \\ _Michel Marcus_, Jun 24 2018
%Y A061150 Cf. A007441, A007445, A030009, A061151-A061152.
%Y A061150 Cf. A127093.
%K A061150 easy,nonn
%O A061150 1,1
%A A061150 _Vladeta Jovovic_, Apr 16 2001
%E A061150 Edited by _N. J. A. Sloane_, May 04 2007