This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061162 #65 Aug 13 2025 13:24:45 %S A061162 1,30,2310,204204,19122246,1848483780,182327718300,18236779032600, %T A061162 1842826521244230,187679234340049620,19232182592635611060, %U A061162 1980665038436368775400,204826599735691440534300,21255328931341321610645544,2212241139727064219063537016 %N A061162 a(n) = (6n)!n!/((3n)!(2n)!^2). %C A061162 According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large. %C A061162 This sequence is the particular case a = 3, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A211419 (a = 3, b = 2), A211420 (a = 4, b = 1) and A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1). The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas). - _Peter Bala_, Apr 10 2012 %D A061162 M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808. %D A061162 R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197. %H A061162 Harry J. Smith, <a href="/A061162/b061162.txt">Table of n, a(n) for n = 0..100</a> %H A061162 J. W. Bober, <a href="http://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, 2007, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2, (2009) 422-444. %H A061162 M. Kontsevich and D. Zagier, <a href="http://www.ihes.fr/~maxim/TEXTS/Periods.pdf">Periods</a>, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22, p. 11. %H A061162 W. Mlotkowski and Karol A. Penson, <a href="http://arxiv.org/abs/1309.0595">Probability distributions with binomial moments</a>, arXiv preprint arXiv:1309.0595 [math.PR], 2013. %H A061162 F. Rodriguez-Villegas, <a href="http://arxiv.org/abs/math/0701362">Integral ratios of factorials and algebraic hypergeometric functions</a>, arXiv:math/0701362 [math.NT], 2007. %F A061162 a(n) ~ 1/2*Pi^(-1/2)*n^(-1/2)*2^(2*n)*3^(3*n)*{1 - 1/72*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002 %F A061162 n*(2*n-1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - _R. J. Mathar_, Oct 26 2014 %F A061162 From _Peter Bala_, Aug 21 2016: (Start) %F A061162 a(n) = Sum_{k = 0..2*n} binomial(6*n, k)*binomial(4*n - k - 1, 2*n - k). %F A061162 a(n) = Sum_{k = 0..n} binomial(8*n, 2*n - 2*k)*binomial(2*n + k - 1, k). %F A061162 O.g.f. A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x). %F A061162 a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^6/(1 - x)^2. Cf. A091496 and A262732. It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. %F A061162 Let G(x) = 1/x * series reversion( x*(1 - x)/(1 + x)^3 ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + ..., essentially the o.g.f. for A007297. Then A(x^2) equals the even part of 1 + x*(d/dx log(G(x))). %F A061162 exp(Sum_{n >= 1} a(n)*x^n/n) = F(x), where F(x) = 1 + 30*x + 1605*x^2 + 107218*x^3 + 8043114*x^4 + 647773116*x^5 + 54730094637*x^6 + ... has integer coefficients since F(x^2) = G(x)*G(-x). Furthermore, F(x)^(1/6) = 1 + 5*x + 205*x^2 + 12328*x^3 + 874444*x^4 + 68022261*x^5 + 5613007167*x^6 + ... appears to have all integer coefficients. (End) %F A061162 a(n) is the n-th moment of the positive weight function w(x) on x = (0,108), i.e.: a(n) = Integral_{x=0..108} x^n*w(x) dx, n >= 0, where w(x) = sqrt(3)*(1 + sqrt(1 - x/108))^(2/3)/(12*2^(1/3)*Pi*x^(5/6)*sqrt(1 - x/108)) + 2^(4/3)*sqrt(3)/(864*Pi*x^(1/6)*(1 + sqrt(1 - x/108))^(2/3)*sqrt(1 - x/108)). The weight function w(x) is singular at x=0 and at x=108 and is the solution of the Hausdorff moment problem. This solution is unique. - _Karol A. Penson_, Mar 01 2018 %F A061162 a(n) = 2^(4*n)*binomial(-n-1/2, 2*n). - _Ira M. Gessel_, Jan 04 2025 %p A061162 A061162 := n->(6*n)!*n!/((3*n)!*(2*n)!^2); %t A061162 a[n_] := 16^n Gamma[3 n + 1/2]/(Gamma[n + 1/2] Gamma[2 n + 1]); %t A061162 Table[a[n], {n, 0, 14}] (* _Peter Luschny_, Mar 01 2018 *) %o A061162 (PARI) { for (n=0, 100, write("b061162.txt", n, " ", (6*n)!*n!/((3*n)!*(2*n)!^2)) ) } \\ _Harry J. Smith_, Jul 18 2009 %Y A061162 Cf. A061163, A061164, A007297, A091527, A262732. %Y A061162 See also A091527, A211419, A211420, A211421. %K A061162 easy,nonn %O A061162 0,2 %A A061162 _Richard Stanley_, Apr 17 2001