This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061169 #9 Feb 07 2023 12:43:42 %S A061169 1,39,315,1687,7470,29634,109421,384105,1298613,4264835,13686456, %T A061169 43102644,133636825,408900987,1237114335,3706490479,11010661266, %U A061169 32463981270,95081107013,276820695645,801633669561 %N A061169 Third column of Lucas bisection triangle (even part). %C A061169 Numerator of g.f. is row polynomial Sum_{m=0..4} A061186(3,m)*x^m. %H A061169 Michael De Vlieger, <a href="/A061169/b061169.txt">Table of n, a(n) for n = 0..2374</a> %H A061169 Geoffrey B. Campbell, <a href="https://arxiv.org/abs/2302.01091">Vector Partition Identities for 2D, 3D and nD Lattices</a>, arXiv:2302.01091 [math.CO], 2023. %F A061169 a(n) = A060923(n+2, 2). %F A061169 G.f.: (1+x)*(1+29*x-35*x^2+12*x^3)/(1-3*x+x^2)^3. %t A061169 CoefficientList[Series[(1 + x) (1 + 29 x - 35 x^2 + 12 x^3)/(1 - 3 x + x^2)^3, {x, 0, 20}], x] (* _Michael De Vlieger_, Feb 06 2023 *) %Y A061169 A002878(n)=A060923(n, 0), A060934. %K A061169 nonn,easy %O A061169 0,2 %A A061169 _Wolfdieter Lang_, Apr 20 2001