cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061171 One half of second column of Lucas bisection triangle (odd part).

This page as a plain text file.
%I A061171 #24 Sep 08 2022 08:45:03
%S A061171 3,19,79,283,940,2982,9171,27581,81557,237995,687158,1966764,5588259,
%T A061171 15780103,44323195,123920827,345062176,957403026,2647935987,
%U A061171 7302634865,20087869313,55128445259,150971982314
%N A061171 One half of second column of Lucas bisection triangle (odd part).
%C A061171 Numerator of g.f. is on half of row polynomial Sum_{m=0..2} A061187(1,m) * x^m.
%H A061171 G. C. Greubel, <a href="/A061171/b061171.txt">Table of n, a(n) for n = 0..1000</a>
%H A061171 É. Czabarka, R. Flórez, L. Junes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Florez/florez12.html">A Discrete Convolution on the Generalized Hosoya Triangle</a>, Journal of Integer Sequences, 18 (2015), #15.1.6.
%H A061171 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).
%F A061171 2*a(n) = A060924(n+1, 1).
%F A061171 G.f.: (1+x)*(3-2*x)/(1-3*x+x^2)^2.
%F A061171 a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4), with a(0)=3, a(1)=19, a(2)=79, a(3)=283. - _Harvey P. Dale_, Oct 11 2012
%F A061171 a(n) = Fibonacci(2*n+4) + n*Lucas(2*n+3). - _Lechoslaw Ratajczak_, May 06 2020
%t A061171 CoefficientList[Series[(1+x)(3-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{3,19,79,283},30] (* _Harvey P. Dale_, Oct 11 2012 *)
%o A061171 (PARI) my(x='x+O('x^30)); Vec((1+x)*(3-2*x)/(1-3*x+x^2)^2) \\ _G. C. Greubel_, Dec 21 2017
%o A061171 (Magma) I:=[3,19,79,283]; [n le 4 select I[n] else 6*Self(n-1) - 11*Self(n-2) + 6*Self(n-3) - Self(n-4): n in [1..30]]; // _G. C. Greubel_, Dec 21 2017
%Y A061171 Cf. A000032, A000045, A001906, A002878, A005248.
%K A061171 nonn,easy
%O A061171 0,1
%A A061171 _Wolfdieter Lang_, Apr 20 2001