This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061177 #7 Apr 06 2021 23:09:33 %S A061177 1,2,-2,3,-5,3,4,-8,8,-4,5,-10,11,-10,5,6,-10,6,-6,10,-6,7,-7,-14,29, %T A061177 -14,-7,7,8,0,-56,120,-120,56,0,-8,9,12,-126,288,-365,288,-126,12,9, %U A061177 10,30,-228,540,-770,770,-540,228,-30,-10,11,55,-363,858 %N A061177 Coefficients of polynomials ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)). %C A061177 The row polynomial pFo(m,x) = Sum_{j=0..m} T(m, j)*x^j is the numerator of the g.f. for the m-th column sequence of A060921, the odd part of the bisected Fibonacci triangle. %H A061177 G. C. Greubel, <a href="/A061177/b061177.txt">Rows n = 0..50 of the triangle, flattened</a> %F A061177 T(n, k) = coefficient of x^k of ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)). %F A061177 T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, 2*j+1)*binomial(n-2*j, k-j), if 0 <= k <= floor(n/2), T(n, k) = (-1)^n*T(n, n-k) if floor(n/2) < k <= n else 0. %F A061177 Sum_{k=0..n} T(n, k) = (1 + (-1)^n)/2 = A059841(n). - _G. C. Greubel_, Apr 06 2021 %e A061177 The first few polynomials are: %e A061177 pFo(0, x) = 1. %e A061177 pFo(1, x) = 2 - 2*x. %e A061177 pFo(2, x) = 3 - 5*x + 3*x^2. %e A061177 pFo(3, x) = 4 - 8*x + 8*x^2 - 4*x^3. %e A061177 pFo(4, x) = 5 - 10*x + 11*x^2 - 10*x^3 + 5*x^4. %e A061177 pFo(5, x) = 6 - 10*x + 6*x^2 - 6*x^3 + 10*x^4 - 6*x^5. %e A061177 Number triangle begins as: %e A061177 1; %e A061177 2, -2; %e A061177 3, -5, 3; %e A061177 4, -8, 8, -4; %e A061177 5, -10, 11, -10, 5; %e A061177 6, -10, 6, -6, 10, -6; %e A061177 7, -7, -14, 29, -14, -7, 7; %e A061177 8, 0, -56, 120, -120, 56, 0, -8; %e A061177 9, 12, -126, 288, -365, 288, -126, 12, 9; %e A061177 10, 30, -228, 540, -770, 770, -540, 228, -30, -10; %t A061177 T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n+1, 2*j+1]*Binomial[n-2*j, k-j], {j,0,k}]; %t A061177 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 06 2021 *) %o A061177 (Magma) %o A061177 A061177:= func< n,k | (&+[(-1)^(k+j)*Binomial(n+1,2*j+1)*Binomial(n-2*j,k-j): j in [0..k]]) >; %o A061177 [A061177(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Apr 06 2021 %o A061177 (Sage) %o A061177 def A061177(n,k): return sum((-1)^(k+j)*binomial(n+1,2*j+1)*binomial(n-2*j,k-j) for j in (0..k)) %o A061177 flatten([[A061177(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Apr 06 2021 %Y A061177 Cf. A059841, A060921, A061176 (companion triangle). %K A061177 sign,easy,tabl %O A061177 0,2 %A A061177 _Wolfdieter Lang_, Apr 20 2001