cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061186 Staircase of coefficients of polynomials used for column g.f.s of triangle A060923.

This page as a plain text file.
%I A061186 #4 Mar 31 2012 13:20:05
%S A061186 1,1,1,1,11,-11,4,1,30,-6,-23,12,1,58,123,-278,193,-72,16,1,95,565,
%T A061186 -715,-145,601,-360,80,1,141,1590,89,-5226,6441,-3659,1260,-336,64,1,
%U A061186 196,3549,6797,-22099,12369,9156,-15791,9492
%N A061186 Staircase of coefficients of polynomials used for column g.f.s of triangle A060923.
%C A061186 a(n,m) is coefficient of x^m of polynomial pLe(n,x) := (((1+x)+(3-2*x)*sqrt(x))^n + ((1+x)-(3-2*x)*sqrt(x))^n)/2 of degree n+floor(n/2)= A032766(n). pLe(n,x)= sum(binomial(n,2*j)*(1+x)^(n-2*j)*(3-2*x)^(2*j)*x^j,j=0..floor(n/2)), n >= 1; pLe(0,x)=1.
%C A061186 pLe(m+1,x) is the numerator polynomial of the g.f. for column m >= 0 of the triangle A060923 (even part of bisection of Lucas triangle).
%F A061186 a(n, m)=sum(((-9/2)^j*binomial(n, 2*j)*sum((-3/2)^(k-m)*binomial(n-2*j, k)*binomial(2*j, m-k-j), k=max(0, (m-3*j))..(n-2*j))), j=0..floor(n/2)), 0<= m <= n+floor(n/2); else 0.
%e A061186 {1}; {1,1}; {1,11,-11,4}; ...; pLe(2,x)= 1+11*x-11*x^2+4*x^3.
%Y A061186 A061187 (companion staircase).
%K A061186 sign,easy,tabf
%O A061186 0,5
%A A061186 _Wolfdieter Lang_, Apr 20 2001