cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061187 Staircase of coefficients of polynomials used for column g.f.s of triangle A060924.

This page as a plain text file.
%I A061187 #4 Mar 31 2012 13:20:05
%S A061187 3,-2,6,2,-4,9,39,-57,30,-8,12,136,-96,-84,104,-32,15,320,293,-1260,
%T A061187 1155,-530,160,-32,18,618,2118,-4242,890,2718,-2652,1088,-192,21,1057,
%U A061187 7224,-5037,-19208,33383,-23793,9534,-2632,672
%N A061187 Staircase of coefficients of polynomials used for column g.f.s of triangle A060924.
%C A061187 a(n,m) is coefficient of x^m of polynomial pLo(n+1,x) := (((1+x)+(3-2*x)*sqrt(x))^(n+1) - ((1+x)-(3-2*x)*sqrt(x))^(n+1))/(2*sqrt(x)) of degree n+1+floor(n/2)= A001651(n). pLo(n+1,x)= sum(binomial(n+1,2*j+1)*(1+x)^(n-2*j)*(3-2*x)^(2*j+1)*x^j,j=0..floor(n/2)), n >= 0.
%C A061187 pLo(m+1,x) appears as numerator polynomial of the g.f. for column m >= 0 of the triangle A060924 (even part of bisection of Lucas triangle).
%F A061187 a(n, m)= sum(3*(-9/2)^j*binomial(n+1, 2*j+1)*sum((-3/2)^(k-m)*binomial(n-2*j, k) *binomial(2*j+1, m-k-j), k=max(0, m-3*j-1)..n-2*j), j=0..floor(n/2)), 0<= m <= n+1+floor(n/2); else 0.
%e A061187 {3, -2}; {6, 2, -4}; {9, 39, -57, 30, -8}; ...; pLo(2, x)= 6+2*x-4*x^2= 2*(1+x)*(3-2*x).
%Y A061187 A061186 (companion staircase).
%K A061187 sign,easy,tabf
%O A061187 0,1
%A A061187 _Wolfdieter Lang_, Apr 20 2001