This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061188 #12 Apr 20 2025 03:23:44 %S A061188 0,1,5,20,45,25,240,350,600,250,3000,9250,13125,8750,1875,93000, %T A061188 373750,361875,240625,103125,15625,3690000,11077500,12818750,8531250, %U A061188 4156250,1181250,125000,116550000,312037500 %N A061188 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000032(n+1), n >= 0 (Lucas numbers). %C A061188 The row polynomials pL1(n,x) := Sum_{m=0..n} a(n,m)*x^m and pL2(n,x) := Sum_{m=0..n} A061189(n,m)*x^m appear in the k-fold convolution of the Lucas numbers L(n+1) = A000204(n+1) = A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k) = (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1))/(k!*5^k). %e A061188 Triangle begins: %e A061188 {0}; %e A061188 {1,5}; %e A061188 {20,45,25}; %e A061188 {240,350,600,250}; %e A061188 ...; %e A061188 pL1(2,n) = 5*(4+9*n+5*n^2) = 5*(1+n)*(4+5*n). %Y A061188 Cf. A061189(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle). %K A061188 nonn,tabl,more %O A061188 0,3 %A A061188 _Wolfdieter Lang_, Apr 20 2001