This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061246 #15 Jul 21 2025 17:01:12 %S A061246 11,19,41,101,109,149,191,199,401,409,419,449,491,499,911,919,941,991, %T A061246 1009,1019,1049,1091,1109,1409,1499,1901,1949,1999,4001,4019,4049, %U A061246 4091,4099,4111,4409,4441,4909,4919,4999,9001,9011,9041,9049,9091,9109,9199 %N A061246 Prime having only {0, 1, 4, 9} as digits. %H A061246 Chai Wah Wu, <a href="/A061246/b061246.txt">Table of n, a(n) for n = 1..10000</a> %H A061246 R. Ondrejka, <a href="http://www.utm.edu/research/primes/lists/top_ten/">The Top Ten: a Catalogue of Primal Configurations</a>. %H A061246 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %e A061246 a(10) = 419, 419 is a prime and 1, 4 and 9 are squares. %t A061246 Select[FromDigits/@Tuples[{0,1,4,9},4],PrimeQ] (* _Harvey P. Dale_, Sep 22 2019 *) %o A061246 (Python) %o A061246 from itertools import product %o A061246 from sympy import isprime %o A061246 A061246_list = [int(i+''.join(j)+k) for l in range(10) for i in '149' for j in product('0149',repeat=l) for k in '19' if isprime(int(i+''.join(j)+k))] # _Chai Wah Wu_, Jan 19 2019 %Y A061246 Cf. A066591. %K A061246 base,nonn %O A061246 1,1 %A A061246 _Amarnath Murthy_, Apr 23 2001 %E A061246 Corrected and extended by _Jason Earls_, May 17 2005 %E A061246 Edited by _N. J. A. Sloane_, Aug 29 2008 at the suggestion of _R. J. Mathar_