This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061248 #24 Feb 19 2024 10:30:47 %S A061248 2,3,5,7,17,19,29,59,79,89,199,389,499,599,997,1889,1999,2999,4999, %T A061248 6899,8999,29989,39989,49999,59999,79999,98999,199999,389999,598999, %U A061248 599999,799999,989999,2998999,2999999,4999999,6999899,8989999,9899999 %N A061248 Primes at which sum of digits strictly increases. %H A061248 Eric M. Schmidt, <a href="/A061248/b061248.txt">Table of n, a(n) for n = 1..1000</a> %e A061248 a(6) = 19, sum of digits is 10; a(7) = 29, sum of digits is 11 and 11 > 10. %t A061248 t = {s = 2}; Do[If[(y = Total[IntegerDigits[x = Prime[n]]]) > s, AppendTo[t, x]; s = y], {n, 2, 750000}]; t (* _Jayanta Basu_, Aug 09 2013 *) %o A061248 (Sage) %o A061248 def A061248(nterms, b=10) : %o A061248 res = []; n_list = [2]; n = 2; dsum = 0 %o A061248 while len(res) < nterms : %o A061248 while not (sum(n_list) >= dsum and n.is_prime()) : %o A061248 i = next((j for j in range(len(n_list)) if n_list[j] < b-1), len(n_list)) %o A061248 if i == len(n_list) : n_list.append(0) %o A061248 n_list[i] += 1 %o A061248 r = dsum - sum(n_list[i:]) %o A061248 for j in range(i) : %o A061248 n_list[j] = min(r, b-1) %o A061248 r -= n_list[j] %o A061248 n = sum(n_list[i]*b^i for i in range(len(n_list))) %o A061248 res.append(n); dsum = sum(n_list)+1 %o A061248 return res %o A061248 # _Eric M. Schmidt_, Oct 08 2013 %Y A061248 For the actual digit sums see A062132. %K A061248 nonn,base %O A061248 1,1 %A A061248 _Amarnath Murthy_, Apr 23 2001 %E A061248 More terms from _Patrick De Geest_, Jun 05 2001