This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061260 #26 Feb 17 2023 21:37:30 %S A061260 1,2,1,3,2,1,5,6,2,1,7,11,6,2,1,11,23,15,6,2,1,15,40,32,15,6,2,1,22, %T A061260 73,67,37,15,6,2,1,30,120,134,79,37,15,6,2,1,42,202,255,172,85,37,15, %U A061260 6,2,1,56,320,470,348,187,85,37,15,6,2,1,77,511,848,697,397,194,85,37,15,6,2,1 %N A061260 G.f.: Product_{k>=1} (1-y*x^k)^(-numbpart(k)), where numbpart(k) = number of partitions of k, cf. A000041. %C A061260 Multiset transformation of A000041. - _R. J. Mathar_, Apr 30 2017 %C A061260 Number of orderless twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. The T(5,3) = 6 orderless twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(11)(1). - _Gus Wiseman_, Mar 23 2018 %H A061260 Alois P. Heinz, <a href="/A061260/b061260.txt">Rows n = 1..141, flattened</a> %H A061260 <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a> %e A061260 : 1; %e A061260 : 2, 1; %e A061260 : 3, 2, 1; %e A061260 : 5, 6, 2, 1; %e A061260 : 7, 11, 6, 2, 1; %e A061260 : 11, 23, 15, 6, 2, 1; %e A061260 : 15, 40, 32, 15, 6, 2, 1; %e A061260 : 22, 73, 67, 37, 15, 6, 2, 1; %e A061260 : 30, 120, 134, 79, 37, 15, 6, 2, 1; %e A061260 : 42, 202, 255, 172, 85, 37, 15, 6, 2, 1; %p A061260 b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, %p A061260 `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial( %p A061260 combinat[numbpart](i)+j-1, j), j=0..min(n/i, p))))) %p A061260 end: %p A061260 T:= (n, k)-> b(n$2, k): %p A061260 seq(seq(T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Apr 13 2017 %t A061260 b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[PartitionsP[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; %t A061260 T[n_, k_] := b[n, n, k]; %t A061260 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, May 17 2018, after _Alois P. Heinz_ *) %Y A061260 Row sums: A001970, first column: A000041. %Y A061260 T(2,n) gives A061261, %Y A061260 Cf. A063834, A119442, A273873, A285229, A289078, A289501, A299200, A299201. %K A061260 easy,nonn,tabl %O A061260 1,2 %A A061260 _Vladeta Jovovic_, Apr 23 2001