A061264 Number of cyclic permutations of the digits of n which give primes.
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 1, 0, 1, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 2, 0, 2, 1, 0
Offset: 1
Examples
a(157) = 2 as among the three cyclic permutations 157, 571, 715, two are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A039999.
Cf. A046810. - R. J. Mathar, Oct 02 2008
Programs
-
Maple
A055642 := proc(n) max(1,ilog10(n)+1) ; end: A061264 := proc(n) local ncyc,s,dgs,a,L,i ; a := 0 ; dgs := convert(n,base,10) ; ncyc := n ; for s from 1 to A055642(n) do if isprime(ncyc) then a := a+1 ; fi; L := ListTools[Rotate](dgs,s) ; ncyc := add(op(i,L)*10^(i-1),i=1..nops(L)) ; od: RETURN(a) ; end: for n from 1 to 120 do printf("%d,",A061264(n)) ; od: # R. J. Mathar, Oct 02 2008
Extensions
More terms from R. J. Mathar, Oct 02 2008
Offset corrected, Joerg Arndt, Aug 05 2015