cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061300 Least number whose number of divisors is n!.

This page as a plain text file.
%I A061300 #25 Sep 06 2023 01:11:35
%S A061300 1,1,2,12,360,55440,61261200,293318625600,6064949221531200,
%T A061300 1315675499575984747200,1130066578473302698988760000,
%U A061300 8029566026151577210973143393920000,44532446925432190155112500678140561280000,89867631285897528426742043782255216503577152000000
%N A061300 Least number whose number of divisors is n!.
%C A061300 a(n) = A037019(n!) for all n <= 12 except for 4. I conjecture that this remains true for all larger n, i.e., 4! is the only "exceptional" factorial (see A037019). - _David Wasserman_, Jun 13 2002
%C A061300 Conjecture is confirmed for n <= 30. - _Max Alekseyev_, Sep 05 2023
%C A061300 Alternate definition: a(0)=1; for n >= 1, smallest number with same number of divisors as A006939(n-1). - _J. Lowell_, May 20 2008
%H A061300 Max Alekseyev, <a href="/A061300/b061300.txt">Table of n, a(n) for n = 0..30</a>
%F A061300 a(n) = A005179(n!); for example, A005179(120)=55440.
%F A061300 a(n) = Min{x| A000005(x)=n!}; for example, A000005(55440)=120 and 55440 is minimal.
%e A061300 a(3) = 12 and tau(12) = 6 = 3!.
%Y A061300 Cf. A000005, A005179, A007304, A006939, A037019, A000142, A072066, A009287.
%Y A061300 Cf. A140635.
%K A061300 nonn,hard
%O A061300 0,3
%A A061300 _Amarnath Murthy_ and _Labos Elemer_, Apr 26 2001
%E A061300 More terms from _David Wasserman_, Jun 13 2002
%E A061300 Terms a(12) onward from _Max Alekseyev_, Sep 05 2023