cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061343 Number of standard shifted tableaux with n entries.

This page as a plain text file.
%I A061343 #27 Aug 22 2021 13:45:47
%S A061343 1,1,2,3,6,12,27,63,154,398,1055,2970,8503,25651,78483,250487,811802,
%T A061343 2723130,9295483,32653552,116866283,428464743,1600474365,6102119282,
%U A061343 23690388631,93631999867,376561553417,1538997717423,6395852269479,26978392034357,115628083386280,502520979828775
%N A061343 Number of standard shifted tableaux with n entries.
%C A061343 Number of ballot sequences (see A000085) where the number of occurrences of k in any prefix is strictly greater than the number of occurrences of k+1. - _Joerg Arndt_, May 21 2016
%D A061343 D. E. Knuth, The Art of Computer Programming, Vol. 3 (Sorting and searching), page 71, Section 5.1.4, Exercise 21 (page 67 in the second edition).
%H A061343 Joerg Arndt, <a href="/A061343/b061343.txt">Table of n, a(n) for n = 1..101</a>
%H A061343 Joerg Arndt, <a href="/A061343/a061343.gp.txt">PARI/GP script</a> to compute terms.
%H A061343 R. Srinivasan, <a href="http://www.jstor.org/stable/2312782">On a theorem of Thrall in combinatorial analysis</a>, The American Mathematical Monthly, 70(1), 1963, pp. 41-44.
%H A061343 R. M. Thrall, <a href="http://projecteuclid.org/euclid.mmj/1028989731">A combinatorial problem</a>, Michigan Math. J. 1, (1952), 81-88.
%F A061343 a(n) is the sum over all partitions into distinct parts of Thrall's formula (4) on page 83, see the PARI script arndt-A061343.gp. - _Joerg Arndt_, May 09 2013
%e A061343 From _Joerg Arndt_, May 21 2016: (Start)
%e A061343 The a(7) = 27 tableaux correspond to the following ballot sequences (dots denote zeros).
%e A061343 ##:     ballot sequence          partition
%e A061343 01:    [ . . . . . . . ]       [ 7 . . . . . . ]
%e A061343 02:    [ . . . . . . 1 ]       [ 6 1 . . . . . ]
%e A061343 03:    [ . . . . . 1 . ]       [ 6 1 . . . . . ]
%e A061343 04:    [ . . . . . 1 1 ]       [ 5 2 . . . . . ]
%e A061343 05:    [ . . . . 1 . . ]       [ 6 1 . . . . . ]
%e A061343 06:    [ . . . . 1 . 1 ]       [ 5 2 . . . . . ]
%e A061343 07:    [ . . . . 1 1 . ]       [ 5 2 . . . . . ]
%e A061343 08:    [ . . . . 1 1 1 ]       [ 4 3 . . . . . ]
%e A061343 09:    [ . . . . 1 1 2 ]       [ 4 2 1 . . . . ]
%e A061343 10:    [ . . . 1 . . . ]       [ 6 1 . . . . . ]
%e A061343 11:    [ . . . 1 . . 1 ]       [ 5 2 . . . . . ]
%e A061343 12:    [ . . . 1 . 1 . ]       [ 5 2 . . . . . ]
%e A061343 13:    [ . . . 1 . 1 1 ]       [ 4 3 . . . . . ]
%e A061343 14:    [ . . . 1 . 1 2 ]       [ 4 2 1 . . . . ]
%e A061343 15:    [ . . . 1 1 . . ]       [ 5 2 . . . . . ]
%e A061343 16:    [ . . . 1 1 . 1 ]       [ 4 3 . . . . . ]
%e A061343 17:    [ . . . 1 1 . 2 ]       [ 4 2 1 . . . . ]
%e A061343 18:    [ . . . 1 1 2 . ]       [ 4 2 1 . . . . ]
%e A061343 19:    [ . . 1 . . . . ]       [ 6 1 . . . . . ]
%e A061343 20:    [ . . 1 . . . 1 ]       [ 5 2 . . . . . ]
%e A061343 21:    [ . . 1 . . 1 . ]       [ 5 2 . . . . . ]
%e A061343 22:    [ . . 1 . . 1 1 ]       [ 4 3 . . . . . ]
%e A061343 23:    [ . . 1 . . 1 2 ]       [ 4 2 1 . . . . ]
%e A061343 24:    [ . . 1 . 1 . . ]       [ 5 2 . . . . . ]
%e A061343 25:    [ . . 1 . 1 . 1 ]       [ 4 3 . . . . . ]
%e A061343 26:    [ . . 1 . 1 . 2 ]       [ 4 2 1 . . . . ]
%e A061343 27:    [ . . 1 . 1 2 . ]       [ 4 2 1 . . . . ]
%e A061343 (End)
%Y A061343 Cf. A000085, A003121 (strict ballot sequences with partition [j, j-1, ..., 3, 2, 1]).
%K A061343 nonn,nice
%O A061343 1,3
%A A061343 V. Reiner and D. White (reiner(AT)math.umn.edu), Jun 07 2001
%E A061343 More terms from _Joerg Arndt_, May 08 2013