A061344 Numbers of form p^m + 1, p odd prime, m >= 1.
4, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240
Offset: 1
References
- H. D. Lueke, Binary odd-periodic complementary sequences. IEEE Trans. Inform. Theory, 43, pp. 365-367, 1997.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000
- Wikipedia, Conference matrix.
Programs
-
PARI
A061344(n)= local(m=1,p); for(c=1,n, until( isprime(m+=2) || ispower(m,[null], && p) && isprime(p),); /*print(c," ",m+1)*/); m+1 \\ - M. F. Hasler, Mar 14 2008
-
Python
from sympy import primepi, integer_nthroot def A061344(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))) return bisection(f,n+1,n+1)+1 # Chai Wah Wu, Feb 03 2025
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2001
Edited by M. F. Hasler, Mar 14 2008
Comments