cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061344 Numbers of form p^m + 1, p odd prime, m >= 1.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240
Offset: 1

Views

Author

Hans Dieter Lueke (lueke(AT)ient.rwth-aachen.de), Jun 08 2001

Keywords

Comments

Lengths of almost-binary sequences with perfect odd-periodic autocorrelation function.
As J. Arndt points out, each element of this sequence leads to a conference matrix (cf. link to Wikipedia and A000952). - M. F. Hasler, Mar 14 2008

References

  • H. D. Lueke, Binary odd-periodic complementary sequences. IEEE Trans. Inform. Theory, 43, pp. 365-367, 1997.

Crossrefs

Equals A061345 + 1. Cf. A000952.

Programs

  • PARI
    A061344(n)= local(m=1,p); for(c=1,n, until( isprime(m+=2) || ispower(m,[null], && p) && isprime(p),); /*print(c," ",m+1)*/); m+1 \\ - M. F. Hasler, Mar 14 2008
    
  • Python
    from sympy import primepi, integer_nthroot
    def A061344(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length())))
        return bisection(f,n+1,n+1)+1 # Chai Wah Wu, Feb 03 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2001
Edited by M. F. Hasler, Mar 14 2008