This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061377 #18 Dec 28 2016 08:22:23 %S A061377 1,3,13,107,1725,55307,3541373,453351051,116061410429,59423895490699, %T A061377 60850185043886205,124621238393774438539,510448653311085144141949, %U A061377 4181595492545647894585284747,68511261060316548415970449436797 %N A061377 a(1) = 1, a(n+1) = numerator of the continued fraction [1; 2, 4, 8, ..., 2^n]. %H A061377 Harvey P. Dale, <a href="/A061377/b061377.txt">Table of n, a(n) for n = 1..82</a> %F A061377 a(n) = 2^(n-1)*a(n-1) + a(n-2). - _Orson R. L. Peters_, Dec 28 2016 %F A061377 0 = a(n)*(-2*a(n+2)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+2*a(n+2)) if n>0. - _Michael Somos_, Dec 28 2016 %e A061377 G.f. = x + 3*x^2 + 13*x^3 + 107*x^4 + 1725*x^5 + 55307*x^6 + 3541373*x^7 + ... %e A061377 a(3) = 13, the numerator of 1 + 1/(2 + 1/4) = 13/9. %p A061377 with(numtheory); f := n->numer(cfrac([seq (2^i,i=0..n)])); for n from 0 to 25 do printf("%d,",f(n)) od; %t A061377 Module[{nn=20,c},c=2^Range[0,nn];Table[Numerator[ FromContinuedFraction[ Take[ c,n]]],{n,nn}]] (* _Harvey P. Dale_, Jun 04 2014 *) %o A061377 (PARI) {a(n) = if( n<1, 0, n<3, 2*n-1, 2^(n-1)*a(n-1) + a(n-2))}; /* _Michael Somos_, Dec 28 2016 */ %Y A061377 Denominators are sequence A015473. %K A061377 nonn,easy,frac %O A061377 1,2 %A A061377 _Amarnath Murthy_, May 02 2001 %E A061377 More terms from Larry Reeves (larryr(AT)acm.org) and Winston C. Yang (winston(AT)cs.wisc.edu), May 15 2001