cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061429 Geometric mean of the digits = 6. In other words, the product of the digits is = 6^k where k is the number of digits.

This page as a plain text file.
%I A061429 #14 Jan 19 2023 01:42:59
%S A061429 6,49,66,94,389,398,469,496,649,666,694,839,893,938,946,964,983,2899,
%T A061429 2989,2998,3689,3698,3869,3896,3968,3986,4499,4669,4696,4949,4966,
%U A061429 4994,6389,6398,6469,6496,6649,6666,6694,6839,6893,6938,6946,6964,6983,8299
%N A061429 Geometric mean of the digits = 6. In other words, the product of the digits is = 6^k where k is the number of digits.
%C A061429 The smallest number containing all the possible digits is 123468889999999. - _Jianing Song_, Nov 21 2019
%H A061429 Reinhard Zumkeller, <a href="/A061429/b061429.txt">Table of n, a(n) for n = 1..10000</a>
%e A061429 694 is a term as the geometric mean of digits is (6*9*4)^(1/3)= 6.
%t A061429 Select[Range[9000],GeometricMean[IntegerDigits[#]]==6&] (* _Harvey P. Dale_, May 29 2021 *)
%o A061429 (Haskell)
%o A061429 a061429 n = a061429_list !! (n-1)
%o A061429 a061429_list = filter (h 1 1) [1..] where
%o A061429    h 0 _ _ = False
%o A061429    h u v 0 = u == v
%o A061429    h u v w = h (r * u) (6 * v) w' where (w', r) = divMod w 10
%o A061429 -- _Reinhard Zumkeller_, Jan 13 2014
%Y A061429 Cf. A061426-A061430.
%Y A061429 Cf. A000400.
%K A061429 nonn,base,easy,look
%O A061429 1,1
%A A061429 _Amarnath Murthy_, May 03 2001
%E A061429 More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001