This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061501 #36 Jan 09 2020 14:13:19 %S A061501 1,2,4,7,1,6,2,9,7,6,6,7,9,2,6,1,7,4,2,1,1,2,4,7,1,6,2,9,7,6,6,7,9,2, %T A061501 6,1,7,4,2,1,1,2,4,7,1,6,2,9,7,6,6,7,9,2,6,1,7,4,2,1,1,2,4,7,1,6,2,9, %U A061501 7,6,6,7,9,2,6,1,7,4,2,1,1,2,4,7,1,6,2,9,7,6,6,7,9,2,6,1,7,4,2,1,1,2,4,7,1 %N A061501 a(1) = 1, a(n+1) = (a(n) + n) mod 10. %C A061501 First row of array shown below. %C A061501 a(n) = most significant digit of A062273(n). %C A061501 Period 20: repeat [1, 2, 4, 7, 1, 6, 2, 9, 7, 6, 6, 7, 9, 2, 6, 1, 7, 4, 2, 1]. - _Peter M. Chema_, Feb 12 2017 %F A061501 a(n) = A008954(n-1) + 1. %F A061501 a(n) = A000124(n) mod 10. - _Peter M. Chema_, Feb 11 2017 %F A061501 From _Chai Wah Wu_, Jan 09 2020: (Start) %F A061501 a(n) = a(n-5) - a(n-10) + a(n-15) for n > 15. %F A061501 G.f.: x*(-x^14 - 2*x^13 - 4*x^12 - 7*x^11 - x^10 - 5*x^9 - 5*x^7 - 5*x^5 - x^4 - 7*x^3 - 4*x^2 - 2*x - 1)/(x^15 - x^10 + x^5 - 1). (End) %e A061501 1 2 4 7 1 6 2 9 7 6 6 ... %e A061501 3 5 8 2 7 3 0 8 7 7 ... %e A061501 6 9 3 8 4 1 9 8 8 ... %e A061501 0 4 9 5 2 0 9 9 ... %e A061501 5 0 6 3 1 0 0 ... %e A061501 1 7 4 2 1 1 ... %t A061501 a = {1}; Do[AppendTo[a, Mod[a[[n - 1]] + n - 1, 10]], {n, 2, 120}]; a (* _Michael De Vlieger_, Feb 13 2017 *) %o A061501 (PARI) a(n)=if(n==1,return(1));(a(n-1)+n-1)%10 %o A061501 for(n=1,50,print1(a(n),", ")) \\ _Derek Orr_, Feb 26 2017 %Y A061501 Cf. A061352, A061353. %Y A061501 Cf. A062273, A077577, A077578. %Y A061501 Cf. A000124. %K A061501 base,nonn,less %O A061501 1,2 %A A061501 _Amarnath Murthy_, May 06 2001 %E A061501 Better description and more terms from Larry Reeves (larryr(AT)acm.org), May 08 2001