A061504 a(1) = 1; for n>1, a(n) = numbers of letters in French name for a(n-1).
1, 2, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4, 6, 3, 5, 4
Offset: 1
Examples
Un, deux, quatre, six, trois, cinq, quatre, ... UN (2 letters), DEUX (4 letters), QUATRE (6 letters), SIX (3 letters), TROIS (5 letters), CINQ (4 letters), QUATRE (6 letters), ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Crossrefs
Formula
From Elmo R. Oliveira, Jun 29 2024: (Start)
G.f.: x*(1+2*x+4*x^2+6*x^3+2*x^4+3*x^5)/(1-x^4).
a(n) = a(n-4) for n > 6. (End)
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Comments