cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061505 Leading digit of n^n.

This page as a plain text file.
%I A061505 #12 Oct 27 2023 22:00:46
%S A061505 1,1,4,2,2,3,4,8,1,3,1,2,8,3,1,4,1,8,3,1,1,5,3,2,1,8,6,4,3,2,2,1,1,1,
%T A061505 1,1,1,1,1,1,1,1,1,1,2,2,3,3,5,6,8,1,1,2,3,5,7,1,1,3,4,8,1,2,3,6,1,2,
%U A061505 4,7,1,2,5,1,2,4,8,1,3,8,1,3,8,1,4,1,2,5,1,3,7,1,4,1,2,7,1,5,1,3,1,2,7,2,5,1
%N A061505 Leading digit of n^n.
%C A061505 The sequence equals 2 in the range n = 3628..3730. - _Rémy Sigrist_, Dec 13 2018
%H A061505 Rémy Sigrist, <a href="/A061505/b061505.txt">Table of n, a(n) for n = 0..10000</a>
%F A061505 Using the formula in A000030: a(n) = [n^n / 10^([log_10(n^n)])] = [n^n / 10^([n*log_10(n)])].
%e A061505 a(7) = 8, as 7^7 = 823543.
%t A061505 a = {}; Do[ a = Append[ a, IntegerDigits[ n^n ] [ [ 1 ] ] ], {n, 1, 75 } ]; a
%o A061505 (PARI) a(n) = digits(n^n)[1] \\ _Rémy Sigrist_, Dec 13 2018
%Y A061505 Cf. A056849.
%K A061505 base,nonn,easy
%O A061505 0,3
%A A061505 _Amarnath Murthy_, May 06 2001
%E A061505 More terms from _Robert G. Wilson v_, May 10 2001
%E A061505 Further terms from _Asher Auel_, May 20 2001
%E A061505 a(0) = 1 prepended by _Rémy Sigrist_, Dec 13 2018