cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064030 Product of unitary divisors of n!.

Original entry on oeis.org

1, 2, 36, 576, 207360000, 268738560000, 416336312719673760153600000000, 6984964247141514123629140377600000000, 300679807141675805997423113304381849600000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Examples

			n = 6 has 8 unitary divisors:{16,45,9,80,5,144,1,720}, a(6) = 720^4 = 268738560000
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n!)^(2^(PrimePi[n]-1)); Array[a, 10] (* Amiram Eldar, Jul 16 2019 *)

Formula

a(n)=(n!)^(A034444(n!)/2)

A064031 Product of non-unitary divisors of n!.

Original entry on oeis.org

1, 1, 1, 576, 207360000, 26956124946896309452800000000000, 2841003716170671644367609186370356458508919205193278721884160000000000000000000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Examples

			n=6: 720 has 22 non-unitary divisors: a(6)=720^11=26956124946896309452800000000000
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n!)^(DivisorSigma[0, n!]/2 - 2^(PrimePi[n]-1)); Array[a, 10] (* Amiram Eldar, Jul 16 2019 *)

Formula

a(n) = A061538(n!) = (n!)^(A048105(n!)/2) = (n!)^((A000005(n!)-A034444(n!))/2)

A064032 Product of unitary divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

1, 2, 3, 36, 100, 400, 1225, 24010000, 252047376, 4032758016, 2075562447064149770496, 531343986448422341246976, 75186222935463997063888896, 19247673071478783248355557376, 2940278105018015412903875390625, 566574142904620264536665169363475932852029446342410000000000000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^(2^(PrimeNu[n]-1)); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^(2^(omega(x)-1)), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061537(A001405(n)). - Amiram Eldar, Jul 22 2024

Extensions

a(15)-a(16) from Amiram Eldar, Jul 22 2024

A064033 Product of non-unitary divisors of binomial(n, floor(n/2)) or a(n) = 1 if all divisors are unitary. See A046098.

Original entry on oeis.org

1, 1, 1, 1, 1, 20, 1, 1, 15876, 1016255020032, 1, 728933458176, 8670998958336, 19247673071478783248355557376, 1714723915100625, 752711194884611945703392100000000, 1, 31226235883841773375939805209600000000, 1, 1357651828905889565182743230460164655087616
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^((numdiv(x) - 2^omega(x))/2), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061538(A001405(n)).

Extensions

a(18)-a(20) from Amiram Eldar, Jul 22 2024
Showing 1-4 of 4 results.