This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061541 #50 Jun 22 2025 10:15:52 %S A061541 0,0,0,1,120,6165,258125,10230360,405918324,16530124800,699126562530, %T A061541 30884683104000,1428626760992860,69248819808744576, %U A061541 3516693960681822375,186964957159176734720,10395215954531344335000,603712553730550509035520,36575888366817680447745924 %N A061541 Number of connected labeled graphs with n nodes and n+2 edges. %H A061541 Vaclav Kotesovec, <a href="/A061541/b061541.txt">Table of n, a(n) for n = 1..380</a> (first 100 terms from T. D. Noe) %H A061541 Steven R. Finch, <a href="https://arxiv.org/abs/2408.12440">An exceptional convolutional recurrence</a>, arXiv:2408.12440 [math.CO], 22 Aug 2024. %H A061541 S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel, <a href="https://dx.doi.org/10.1002/rsa.3240040303">The Birth of the Giant Component</a>, Random Structures and Algorithms Vol. 4 (1993), 233-358. %H A061541 S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel, <a href="https://arxiv.org/abs/math/9310236">The Birth of the Giant Component</a>, arXiv:math/9310236 [math.PR], 1993. %H A061541 E. M. Wright, <a href="https://dx.doi.org/10.1002/jgt.3190010407">The Number of Connected Sparsely Edged Graphs</a>, Journal of Graph Theory Vol. 1 (1977), 317-330. %F A061541 E.g.f.: W2(x) = (1/48)*T(x)^4*(2 + 28*T(x) - 23*T(x)^2 + 9*T(x)^3 - T(x)^4)/(1 - T(x))^6, where T(x) is the e.g.f. for rooted labeled trees (A000169), i.e., T(x) = -LambertW(-x) = x*exp(T(x)). %F A061541 a(n) ~ 5*n^(n+5/2)*sqrt(2*Pi)/256 * (1 - 56*sqrt(2)/(9*sqrt(Pi*n))). - _Vaclav Kotesovec_, Apr 06 2014 %t A061541 f[x_] = (1/(48*(1 + ProductLog[-x])^6))* ProductLog[-x]^4*(2 - 28*ProductLog[-x] - 23*ProductLog[-x]^2 - 9*ProductLog[-x]^3 - ProductLog[-x]^4); Rest[CoefficientList[Series[f[x], {x, 0, 17}], x]*Range[0, 17]!] (* _Jean-François Alcover_, Jul 11 2011, after formula *) %o A061541 (PARI) N=66; x='x+O('x^N); /* that many terms */ %o A061541 T=sum(n=1,N,n^(n-1)/n!*x^n); /* e.g.f. of A000169 */ %o A061541 egf=1/48*T^4*(2+28*T-23*T^2+9*T^3-T^4)/(1-T)^6; %o A061541 Vec(serlaplace(egf)) /* show terms, starting with 1 */ %o A061541 /* _Joerg Arndt_, Jul 11 2011 */ %Y A061541 A diagonal of A343088. %Y A061541 Cf. A000169, A000272, A057500, A061541, A061542, etc. %K A061541 easy,nice,nonn %O A061541 1,5 %A A061541 RAVELOMANANA Vlady (vlad(AT)lri.fr), May 16 2001