cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061542 Number of connected labeled graphs with n nodes and n+3 edges.

Original entry on oeis.org

0, 0, 0, 0, 45, 4945, 331506, 18602136, 974679363, 50088981600, 2588876118675, 136440380444544, 7389687834858186, 413138671455654144, 23901631262740105875, 1432747304604594800640, 89030607737889046580442, 5735122824857219251863552, 382868741381818853194796754
Offset: 1

Views

Author

RAVELOMANANA Vlady (vlad(AT)lri.fr), May 16 2001

Keywords

Crossrefs

A diagonal of A343088.

Programs

  • Mathematica
    terms = 17; T[x_] = -ProductLog[-x];
    W2[x_] = (1/5760)*T[x]^5*((2160 + 9320*T[x] - 12576*T[x]^2 + 9864*T[x]^3 - 4081*T[x]^4 + 914*T[x]^5 - 76*T[x]^6)/(1 - T[x])^9) + O[x]^(terms+1);
    Drop[CoefficientList[W2[x], x]*Range[0, terms]!, 1](* Jean-François Alcover, Nov 04 2011, updated Jan 11 2018 *)

Formula

E.g.f.: W2(x) = 1/5760*T(x)^5*(2160 + 9320*T(x) - 12576*T(x)^2 + 9864*T(x)^3 - 4081*T(x)^4 + 914*T(x)^5 - 76*T(x)^6)/((1 - T(x))^9), where T(x) is the e.g.f. for rooted labeled trees (A000169), i.e. T(x) = - LambertW( - x) = x*exp(T(x)).
a(n) ~ 221 * n^(n+4) / 24192 * (1 - 2205*sqrt(2*Pi/n)/884). - Vaclav Kotesovec, Jan 11 2018