This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061549 #47 Jun 28 2025 09:28:45 %S A061549 1,8,128,1024,32768,262144,4194304,33554432,2147483648,17179869184, %T A061549 274877906944,2199023255552,70368744177664,562949953421312, %U A061549 9007199254740992,72057594037927936,9223372036854775808,73786976294838206464,1180591620717411303424,9444732965739290427392 %N A061549 Denominator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p=1/4. %C A061549 We observe that b(n) = log(a(n))/log(2) = A120738(n). Furthermore c(n+1) = b(n+1)-b(n) = A090739(n+1) and c(n+1)-3 = A007814(n+1) for n>=0. - _Johannes W. Meijer_, Jul 06 2009 %C A061549 Using WolframAlpha, it appears that 2*a(n) gives the coefficients of Pi in the denominators of the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - _Nicholas Juricic_, Mar 31 2022 %H A061549 Indranil Ghosh, <a href="/A061549/b061549.txt">Table of n, a(n) for n = 0..500</a> %H A061549 Robert M. Kozelka, <a href="http://www.jstor.org/stable/2322033">Grade Point Averages and the Central Limit Theorem</a>, American Mathematical Monthly. Nov. 1979 (86:9) pp. 773-7. %H A061549 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CircleLinePicking.html">Circle Line Picking</a> %H A061549 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a> %F A061549 a(n) = denominator of binomial(2*n-1/2, -1/2). %F A061549 a(n) are denominators of coefficients of 1/(sqrt(1+x)-sqrt(1-x)) power series. - _Benoit Cloitre_, Mar 12 2002 %F A061549 a(n) = 16^n/A001316(n). - _Paul Barry_, Jun 29 2006 %F A061549 a(n) = denom((4*n)!/(2^(4*n)*(2*n)!^2)). - _Johannes W. Meijer_, Jul 06 2009 %F A061549 a(n) = abs(A067624(n)/A117972(n)). - _Johannes W. Meijer_, Jul 06 2009 %e A061549 For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The denominator of this term is 8, which is the second term of the sequence. %p A061549 seq(denom(binomial(2*n-1/2, -1/2)), n=0..20); %t A061549 Table[Denominator[(4*n)!/(2^(4*n)*(2*n)!^2) ], {n, 0, 20}] (* _Indranil Ghosh_, Mar 11 2017 *) %o A061549 (Sage) # uses[A000120] %o A061549 def a(n): return 1 << (4*n - A000120(n)) %o A061549 [a(n) for n in (0..19)] # _Peter Luschny_, Dec 02 2012 %o A061549 (PARI) for(n=0, 20, print1(denominator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ _Indranil Ghosh_, Mar 11 2017 %o A061549 (Python) %o A061549 import math %o A061549 f = math.factorial %o A061549 def A061549(n): return (2**(4*n)*f(2*n)**2) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # _Indranil Ghosh_, Mar 11 2017 %o A061549 (Magma) %o A061549 A061549:= func< n | 2^(4*n-(&+Intseq(2*n, 2))) >; %o A061549 [A061549(n): n in [0..30]]; // _G. C. Greubel_, Oct 20 2024 %Y A061549 Cf. A007814, A061548, A090739. %Y A061549 Bisection of A046161. %Y A061549 Appears in A162448. %K A061549 nonn,frac,easy %O A061549 0,2 %A A061549 Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001 %E A061549 More terms from _Asher Auel_, May 20 2001