cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061558 The smallest difference of an increasing arithmetic progression of n primes with the minimal possible first term (A007918(n)).

This page as a plain text file.
%I A061558 #35 Jun 30 2025 14:38:12
%S A061558 0,1,2,6,6,30,150,1210230,32671170,224494620,1536160080,1482708889200,
%T A061558 9918821194590,266029822978920,266029822978920,11358256064006271420,
%U A061558 341976204789992332560,128642760444772214170530,2166703103992332274919550
%N A061558 The smallest difference of an increasing arithmetic progression of n primes with the minimal possible first term (A007918(n)).
%C A061558 Apart from the initial term, does this sequence coincide with A113461? - _N. J. A. Sloane_, Sep 22 2007
%H A061558 Jens Kruse Andersen, <a href="http://primerecords.dk/aprecords.htm">Records for primes in arithmetic progression</a>
%H A061558 Jaroslaw Wroblewski, <a href="http://groups.yahoo.com/group/primenumbers/message/25033">Re: AP19 starting with 19</a>, Yahoo group "primenumbers", Apr 10 2013.
%H A061558 Jaroslaw Wroblewski, Mike Oakes, Jens Kruse Andersen, <a href="/A061558/a061558.txt">AP19 starting with 19</a>, digest of 6 messages in primenumbers Yahoo group, Feb 25 - Apr 10, 2013.
%H A061558 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a>
%e A061558 For n = 10, the smallest difference a(10) = 224494620 with the first term 11 (= A007918(10)) producing an arithmetic progression of 10 primes.
%Y A061558 Cf. A007918 (initial terms), A120302 (last terms), A130791 (triangle).
%K A061558 nonn,hard
%O A061558 1,3
%A A061558 _Gennady Gusev_, May 17 2001
%E A061558 a(16) and a(17) from P. Carmody. - _Gennady Gusev_, Oct 07 2005
%E A061558 a(0) deleted by _N. J. A. Sloane_, Sep 22 2007
%E A061558 a(18) from _Gennady Gusev_, Oct 31 2012
%E A061558 a(19) from _Wojciech Izykowski_, Apr 11 2013