cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061579 Reverse one number (0), then two numbers (2,1), then three (5,4,3), then four (9,8,7,6), etc.

This page as a plain text file.
%I A061579 #50 Jun 06 2024 23:24:33
%S A061579 0,2,1,5,4,3,9,8,7,6,14,13,12,11,10,20,19,18,17,16,15,27,26,25,24,23,
%T A061579 22,21,35,34,33,32,31,30,29,28,44,43,42,41,40,39,38,37,36,54,53,52,51,
%U A061579 50,49,48,47,46,45,65,64,63,62,61,60,59,58,57,56,55,77,76,75,74,73,72,71,70,69,68,67,66
%N A061579 Reverse one number (0), then two numbers (2,1), then three (5,4,3), then four (9,8,7,6), etc.
%C A061579 A self-inverse permutation of the nonnegative numbers.
%C A061579 a(n) is the smallest nonnegative integer not yet in the sequence such that n + a(n) is one less than a square. - _Franklin T. Adams-Watters_, Apr 06 2009
%C A061579 From _Michel Marcus_, Mar 01 2021: (Start)
%C A061579 Array T(n,k) = (n+k)^2/2 + (n+3*k)/2 for n,k >= 0 read by descending antidiagonals.
%C A061579 Array T(n,k) = (n+k)^2/2 + (3*n+k)/2 for n,k >= 0 read by ascending antidiagonals. (End)
%H A061579 Harry J. Smith, <a href="/A061579/b061579.txt">Table of n, a(n) for n = 0..1000</a>
%H A061579 Madeline Brandt and Kåre Schou Gjaldbæk, <a href="https://arxiv.org/abs/2102.13578">Classification of Quadratic Packing Polynomials on Sectors of R^2</a>, arXiv:2102.13578 [math.NT], 2021. See Figure 9 p. 17.
%H A061579 Gennady Eremin, <a href="https://arxiv.org/abs/2405.16143">Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant</a>, arXiv:2405.16143 [math.CO], 2024.
%H A061579 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A061579 a(n) = floor(sqrt(2n+1)-1/2)*floor(sqrt(2n+1)+3/2) - n = A005563(A003056(n)) - n.
%F A061579 Row (or antidiagonal) n = 0, 1, 2, ... contains the integers from A000217(n) to A000217(n+1)-1 in reverse order (for diagonals, "reversed" with respect to the canonical "falling" order, cf. A001477/table). - _M. F. Hasler_, Nov 09 2021
%F A061579 From _Alois P. Heinz_, Feb 10 2023: (Start)
%F A061579 T(n,k) = n*(n+3)/2 - k.
%F A061579 Sum_{k=0..n} k * T(n,k) = A002419(n).
%F A061579 Sum_{k=0..n} k^2 * T(n,k) = A119771(n).
%F A061579 Sum_{k=0..n} (-1)^k * T(n,k) = A226725(n). (End)
%e A061579 Read as a triangle, the sequence is:
%e A061579     0
%e A061579     2   1
%e A061579     5   4   3
%e A061579     9   8   7   6
%e A061579    14  13  12  11  10
%e A061579   (...)
%e A061579 As an infinite square matrix (cf. the "table" link, 2nd paragraph) it reads:
%e A061579     0    2    5    9   14   20   ...
%e A061579     1    4    8   13   19   22   ...
%e A061579     3    7   12   18   23   30   ...
%e A061579     6   11   17   24   31   39   ...
%e A061579   (...)
%p A061579 T:= (n,k)-> n*(n+3)/2-k:
%p A061579 seq(seq(T(n,k), k=0..n), n=0..12);  # _Alois P. Heinz_, Feb 10 2023
%t A061579 Module[{nn=20},Reverse/@TakeList[Range[0,(nn(nn+1))/2],Range[nn]]]// Flatten (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Jul 06 2018 *)
%o A061579 (PARI) A061579_row(n)=vector(n+=1, j, n*(n+1)\2-j)
%o A061579 A061579_upto(n)=concat([A061579_row(r)|r<-[0..sqrtint(2*n)]]) \\ yields approximately n terms: actual number differs by less than +- sqrt(n). - _M. F. Hasler_, Nov 09 2021
%o A061579 (Python)
%o A061579 from math import isqrt
%o A061579 def A061579(n): return (r:=isqrt((n<<3)+1)-1>>1)*(r+2)-n # _Chai Wah Wu_, Feb 10 2023
%Y A061579 Fixed points are A046092.
%Y A061579 Row sums give A027480.
%Y A061579 Each reversal involves the numbers from A000217 through to A000096.
%Y A061579 Cf. A038722. Transpose of A001477.
%Y A061579 Cf. A002419, A119771, A226725.
%K A061579 nonn,tabl
%O A061579 0,2
%A A061579 _Henry Bottomley_, May 21 2001