This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061694 #21 Mar 04 2021 16:21:26 %S A061694 0,0,36,864,17500,351000,7197169,151633440,3275925804,72315234000, %T A061694 1625547144199,37102497859152,857909644412275,20059247889751161, %U A061694 473562712831103536,11274693857547716640,270435401233629732940 %N A061694 Generalized Bell numbers. %H A061694 Vincenzo Librandi, <a href="/A061694/b061694.txt">Table of n, a(n) for n = 1..200</a> %H A061694 Vaclav Kotesovec, <a href="/A061694/a061694.txt">Recurrence (of order 6)</a> %H A061694 J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4. %F A061694 a(n) = 1/6*Sum_{i+j+k=n, i, j, k>0} (n!/(i!*j!*k!))^3. - _Vladeta Jovovic_, Apr 23 2003 %F A061694 a(n) ~ 3^(3*n+1) / (8*Pi^2*n^2). - _Vaclav Kotesovec_, Mar 14 2014 %F A061694 Sum_{n>=1} a(n) * x^n / (n!)^3 = (1/6) * ( Sum_{n>=1} x^n / (n!)^3 )^3. - _Ilya Gutkovskiy_, Mar 04 2021 %t A061694 Table[Sum[Sum[(n!/(i!*j!*(n-i-j)!))^3/6,{i,1,n-j-1}],{j,1,n}],{n,1,20}] (* _Vaclav Kotesovec_, Mar 14 2014 *) %K A061694 nonn %O A061694 1,3 %A A061694 _N. J. A. Sloane_, Jun 19 2001 %E A061694 More terms from _Vladeta Jovovic_, Apr 23 2003