This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061704 #52 Jun 06 2025 00:38:28 %S A061704 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,1,1, %T A061704 1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,3,1,1,1,1, %U A061704 1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1 %N A061704 Number of cubes dividing n. %H A061704 Antti Karttunen, <a href="/A061704/b061704.txt">Table of n, a(n) for n = 1..10000</a> %H A061704 Vaclav Kotesovec, <a href="/A061704/a061704.jpg">Graph - the asymptotic ratio (100000 terms)</a> %H A061704 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A061704 Multiplicative with a(p^e) = floor(e/3) + 1. - _Mitch Harris_, Apr 19 2005 %F A061704 G.f.: Sum_{n>=1} x^(n^3)/(1-x^(n^3)). - _Joerg Arndt_, Jan 30 2011 %F A061704 a(n) = A000005(A053150(n)). %F A061704 Dirichlet g.f.: zeta(3*s)*zeta(s). - _Geoffrey Critzer_, Feb 07 2015 %F A061704 Sum_{k=1..n} a(k) ~ zeta(3)*n + zeta(1/3)*n^(1/3). - _Vaclav Kotesovec_, Dec 01 2020 %F A061704 a(n) = Sum_{k=1..n} (1 - ceiling(n/k^3) + floor(n/k^3)). - _Wesley Ivan Hurt_, Jan 28 2021 %e A061704 a(128) = 3 since 128 is divisible by 1^3 = 1, 2^3 = 8 and 4^3 = 64. %p A061704 N:= 1000: # to get a(1)..a(N) %p A061704 G:= add(x^(n^3)/(1-x^(n^3)),n=1..floor(N^(1/3))): %p A061704 S:= series(G,x,N+1): %p A061704 seq(coeff(S,x,j),j=1..N); # _Robert Israel_, Jul 28 2017 %p A061704 # alternative %p A061704 A061704 := proc(n) %p A061704 local a,pe ; %p A061704 a := 1 ; %p A061704 for pe in ifactors(n)[2] do %p A061704 op(2,pe) ; %p A061704 a := a*(1+floor(%/3)) ; %p A061704 end do: %p A061704 a ; %p A061704 end proc: %p A061704 seq(A061704(n),n=1..80) ; # _R. J. Mathar_, May 10 2023 %t A061704 nn = 100; f[list_, i_]:= list[[i]]; Table[ DirichletConvolve[ f[ Boole[ Map[ IntegerQ[#] &, Map[#^(1/3) &, Range[nn]]]], n],f[Table[1, {nn}], n], n, m], {m, 1, nn}] (* _Geoffrey Critzer_, Feb 07 2015 *) %t A061704 Table[DivisorSum[n, 1 &, IntegerQ[#^(1/3)] &], {n, 105}] (* _Michael De Vlieger_, Jul 28 2017 *) %t A061704 f[p_, e_] := 1 + Floor[e/3]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Sep 15 2020 *) %o A061704 (PARI) a(n) = sumdiv(n, d, ispower(d, 3)); \\ _Michel Marcus_, Jan 31 2015 %o A061704 (Python) %o A061704 from math import prod %o A061704 from sympy import factorint %o A061704 def A061704(n): return prod(e//3+1 for e in factorint(n).values()) # _Chai Wah Wu_, Jun 05 2025 %Y A061704 Cf. A000005, A000578, A046951, A053150. %K A061704 nonn,mult %O A061704 1,8 %A A061704 _Henry Bottomley_, Jun 18 2001