This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061711 #71 Mar 31 2025 13:10:34 %S A061711 1,1,8,162,6144,375000,33592320,4150656720,676457349120, %T A061711 140587147048320,36288000000000000,11388728893445164800, %U A061711 4270826380475341209600,1886009588552176549862400,968725766854884321342259200,572622616354851562500000000000 %N A061711 a(n) = n^n * n!. %C A061711 a(n) is the product of first n terms of an arithmetic progression with first term n and common difference n. E.g. a(3) = 3*6*9 = 162. - _Amarnath Murthy_, Sep 20 2003 %C A061711 Product of the entries in the last column of an n X n square array whose elements are the numbers 1..n^2 listed in increasing order by rows. - _Wesley Ivan Hurt_, Mar 31 2025 %H A061711 Harry J. Smith, <a href="/A061711/b061711.txt">Table of n, a(n) for n = 0..100</a> (corrected by Michel Marcus, Jan 19 2019) %F A061711 E.g.f.: sinh(n*x)^n. - _Vaclav Kotesovec_, Nov 05 2014 %F A061711 a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - 2*n*x/(1 - 2*n*x/(1 - 3*n*x/(1 - 3*n*x/(1 - ...))))))), a continued fraction. - _Ilya Gutkovskiy_, Sep 20 2017 %F A061711 Sum_{n>=1} 1/a(n) = A336765. - _Amiram Eldar_, Nov 20 2020 %F A061711 a(n) ~ exp(-n)*n^(2*n)*sqrt(2*n*Pi). - _Peter Luschny_, Jan 10 2022 %e A061711 a(1) = 1^1 * 1! = 1; %e A061711 a(2) = 2^2 * 2! = 8; %e A061711 a(3) = 3^3 * 3! = 162. %t A061711 Table[If[n == 0, 1, n^n] * n!, {n, 0, 20}] (* _Vaclav Kotesovec_, Mar 08 2018 *) %o A061711 (PARI) a(n) = n!*n^n; \\ _Harry J. Smith_, Jul 26 2009 %o A061711 (Python) %o A061711 from math import factorial %o A061711 def A061711(n): return factorial(n)*n**n # _Chai Wah Wu_, Sep 03 2022 %o A061711 (Magma) [Factorial(n)*n^n: n in [0..30]]; // _G. C. Greubel_, Nov 29 2022 %Y A061711 Cf. A036679, A053042, A055775. - _Vladimir Joseph Stephan Orlovsky_, Jan 15 2009 %Y A061711 Main diagonal of A131182. %Y A061711 Cf. A336765. %K A061711 easy,nonn %O A061711 0,3 %A A061711 Lorenzo Fortunato (fortunat(AT)pd.infn.it), Jun 19 2001