cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061721 Number of zeros in the character table of the dihedral group with 2n elements.

This page as a plain text file.
%I A061721 #19 Mar 07 2020 05:38:04
%S A061721 0,0,1,3,2,4,3,10,4,8,5,15,6,12,7,26,8,16,9,27,10,20,11,42,12,24,13,
%T A061721 39,14,28,15,62,16,32,17,55,18,36,19,74,20,40,21,63,22,44,23,106,24,
%U A061721 48,25,75,26,52,27,106,28,56,29,103,30,60,31,142,32,64,33,99
%N A061721 Number of zeros in the character table of the dihedral group with 2n elements.
%H A061721 Eric M. Schmidt, <a href="/A061721/b061721.txt">Table of n, a(n) for n = 1..10000</a>
%F A061721 For odd n, a(n) = (n-1)/2.
%F A061721 For n = 2 (mod 4), a(n) = n - 2. - _Eric M. Schmidt_, Jul 04 2012
%e A061721 a(3) = 1 because the group is isomorphic to S_3 and the table is : 1, 1, 1 1,-1, 1 2, 0,-1
%t A061721 a[n_] := Count[FiniteGroupData[{"DihedralGroup", n}, "CharacterTable"], 0, 2]; Array[a, 100] (* _Jean-François Alcover_, Oct 08 2016 *)
%o A061721 (Sage)
%o A061721 def A061721(n) :
%o A061721     if n % 2 == 1 : return (n - 1) // 2
%o A061721     if n % 4 == 2 : return n - 2
%o A061721     numzeros = n - 2
%o A061721     np = n // 4
%o A061721     for m in range(1, n // 2) :
%o A061721         t = lcm(m, np)
%o A061721         if (t // np) % 2 == 1 :
%o A061721             maxmul = m * n // 2
%o A061721             numzeros += (maxmul // t) - (maxmul // (2*t))
%o A061721     return numzeros
%o A061721 # _Eric M. Schmidt_, Jul 04 2012
%Y A061721 Cf. A060762.
%K A061721 nonn
%O A061721 1,4
%A A061721 Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 20 2001
%E A061721 More terms from _Eric M. Schmidt_, Jul 04 2012