This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061725 #37 Jul 20 2025 13:13:31 %S A061725 6,11,27,51,123,171,291,363,531,843,963,1371,1683,1851,2211,2811,3483, %T A061725 3723,4491,5043,5331,6243,6891,7923,9411,10203,10611,11451,11883, %U A061725 12771,16131,17163,18771,19323,22203,22803,24651,26571,27891,29931 %N A061725 p^2 + 2 where p is a prime. %C A061725 For any n >= 3, a(n) is of the form a(n) = 27 + 6m, m >= 0 integer. This follows from the simple fact that for any prime p >= 5, (p + 5)(p - 5) is divisible by 6. - Shai Covo (green355(AT)netvision.net.il), Oct 04 2010 %D A061725 David M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, pp. 51. %D A061725 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Example 5.1 on page 153. %H A061725 Harry J. Smith, <a href="/A061725/b061725.txt">Table of n, a(n) for n = 1..1000</a> %p A061725 A061725:=n->ithprime(n)^2+2: seq(A061725(n), n=1..50); # _Wesley Ivan Hurt_, Mar 17 2015 %t A061725 Prime[Range[40]]^2 + 2 (* _Geoffrey Critzer_, Feb 01 2015 *) %o A061725 (PARI) v=[]; for(n=1,100,v=concat(v,(prime(n)^2)+2)); v %o A061725 (PARI) { n=0; forprime (p=2, prime(1000), write("b061725.txt", n++, " ", p^2 + 2) ) } \\ _Harry J. Smith_, Jul 27 2009 %o A061725 (Magma) [p^2+2: p in PrimesUpTo(200)]; // _Vincenzo Librandi_, Mar 22 2015 %Y A061725 Cf. A000040, A001248. %K A061725 easy,nonn %O A061725 1,1 %A A061725 _Jason Earls_, Jun 23 2001