This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061747 #22 Jun 26 2016 00:10:09 %S A061747 0,8,16,914,17912,91517910,179139151798,91517911179139151716, %T A061747 1791391517999151791117913915914, %U A061747 91517911179139151717179139151799915179111791317912 %N A061747 a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 8. %C A061747 In A061511-A061522, A061746-A061750 when the incremented digit exceeds 9 it is written as a 2-digit string. So 9+1 becomes the 2-digit string 10, etc. %C A061747 Considering each term as a sequence of digits, the subsequences a(2n) and a(2n-1) converge to two different fixed points of the operation, 17913915179... and 915179111791391517.... More precisely, the digits of a(n) except the last are the first digits of a(n+2). - _M. F. Hasler_, Jun 24 2016 %C A061747 a(16) has 1270 decimal digits. - _Michael De Vlieger_, Jun 24 2016 %H A061747 Michael De Vlieger, <a href="/A061747/b061747.txt">Table of n, a(n) for n = 0..15</a> %t A061747 NestList[FromDigits@ Flatten@ Map[IntegerDigits, IntegerDigits[#] + 8] &, 0, 9] (* _Michael De Vlieger_, Jun 24 2016, after _Harvey P. Dale_ at A061512 *) %o A061747 (PARI) A061747(n=2, a=if(n,8), m=8)={for(n=2, n, a=eval(concat(apply(t->Str(t+m), digits(a))))); a} \\ If only the 2nd argument is given, then the operation is applied once to that argument. - _M. F. Hasler_, Jun 24 2016 %Y A061747 Cf. A061746 - A061750, A061511 - A061522; A061581 - A061587. %K A061747 base,nonn %O A061747 0,2 %A A061747 _Amarnath Murthy_, May 08 2001 %E A061747 More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001