A061769 The least number k = a(n) > a(n-1) for which k!/(k+1)^m for increasing m's.
1, 5, 11, 23, 35, 39, 44, 47, 59, 71, 79, 89, 119, 143, 179, 239, 359, 479, 629, 671, 719, 1079, 1119, 1259, 1343, 1439, 1889, 2015, 2159, 2239, 2519, 2879, 3023, 3359, 3779, 4031, 4319, 5039, 6047, 6719, 7559, 8639, 10079
Offset: 0
Keywords
Examples
a(5) = 35 (one of the few composites in this sequence) because 35 is the least number such that 35!/36^7 and 23!/24^6.
Programs
-
Mathematica
l = 0; Do[k = Max[l - 1, 1]; While[ !IntegerQ[ k! / (k + 1)^n], k++ ]; If[ k > l, l = k; Print[k] ], {n, 0, 1500} ]