This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061808 #57 Mar 06 2025 11:06:16 %S A061808 1,3,5,7,9,11,13,15,17,19,315,115,75,135,319,31,33,35,37,39,533,559, %T A061808 135,517,539,51,53,55,57,59,793,315,195,335,759,71,73,75,77,79,1377, %U A061808 913,595,957,979,91,93,95,97,99,1111,515,315,535,1199,111,113,115,117,119,1331,1353,375,1397,1935 %N A061808 a(n) is the smallest number with all digits odd that is divisible by 2n-1. %C A061808 From _Yang Haoran_, Dec 02 2017, edited by _M. F. Hasler_, Mar 05 2025: (Start) %C A061808 Record value for a(n) = (2n-1) * A296009(n): %C A061808 (1, 3, 5, ..., 19) * 1 = (1, 3, 5, ..., 19) %C A061808 21 * 15 = 315 %C A061808 29 * 11 = 319 %C A061808 41 * 13 = 533 %C A061808 43 * 13 = 559 %C A061808 61 * 13 = 793 %C A061808 81 * 17 = 1377 %C A061808 127 * 11 = 1397 %C A061808 129 * 15 = 1935 %C A061808 149 * 13 = 1937 %C A061808 167 * 19 = 3173 %C A061808 169 * 33 = 5577 %C A061808 201 * 155 = 31155 %C A061808 299 * 105 = 31395 %C A061808 401 * 133 = 53333 %C A061808 601 * 119 = 71519 %C A061808 633 * 283 = 179139 %C A061808 (complete up to here) %C A061808 ... %C A061808 990001 * 12121113 = 11999913991113 (the first A296009(n) > 2n-1). %C A061808 (End) %C A061808 All terms must be odd. - _M. F. Hasler_, Mar 05 2025 %H A061808 Robert Israel, <a href="/A061808/b061808.txt">Table of n, a(n) for n = 1..10000</a> %H A061808 Mathematical Excalibur, <a href="https://www.math.ust.hk/excalibur/v13_n1.pdf">Problem 300</a>, Vol. 1 No. 3 (2008), p. 3. %F A061808 From _M. F. Hasler_, Mar 05 2025: (Start) %F A061808 a(n) = (2n-1)*A296009(n). %F A061808 a(n) == 1 (mod 2) for all n. (End) %p A061808 Ad[1]:= [1,3,5,7,9]: %p A061808 for n from 2 to 9 do Ad[n]:= map(t -> seq(10*t+j,j=[1,3,5,7,9]), Ad[n-1]) od: %p A061808 Aod:= [seq(op(Ad[i]),i=1..9)]: %p A061808 f:= proc(n) local k; %p A061808 for k from 1 to nops(Aod) do %p A061808 if Aod[k] mod (2*n-1) = 0 then return(Aod[k]) fi %p A061808 od; %p A061808 NotFound %p A061808 end proc: %p A061808 map(f, [$1..100]); # _Robert Israel_, Feb 15 2017 %t A061808 Table[Block[{k = 2 n - 1}, While[Nand[AllTrue[IntegerDigits@ k, OddQ], Divisible[k, 2 n - 1]], k += 2]; k], {n, 59}] (* _Michael De Vlieger_, Dec 02 2017 *) %o A061808 (Magma) a:=[]; for n in [1..120 by 2] do k:=1; while not Set(Intseq(n*k)) subset {1,3,5,7,9} do k:=k+2; end while; Append(~a,k*n); end for; a; // _Marius A. Burtea_, Sep 20 2019 %o A061808 (PARI) isoddd(n) = #select(x->((x%2) == 0), digits(n)) == 0; %o A061808 a(n) = {my(m = 2*n-1, k = 1); while(!isoddd(k*m), k++); k*m;} \\ _Michel Marcus_, Sep 20 2019 %o A061808 (PARI) apply( {A061808(n)=forstep(k=n*2-1,oo,n*4-2,vecmin(digits(k)%2)&& return(k))}, [1..99]) %o A061808 (Python) A061808 = lambda n: next(m for m in range(2*n-1,9<<99,4*n-2) if all(int(d)&1 for d in str(m))) # _M. F. Hasler_, Mar 05 2025 %Y A061808 Cf. A061807, A014261. %Y A061808 Equals A296009 * (2n-1). %K A061808 base,nonn,look %O A061808 1,2 %A A061808 _Amarnath Murthy_, May 28 2001 %E A061808 Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001