This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061829 #17 Jun 10 2018 14:44:42 %S A061829 5,15,35,55,75,95,115,135,155,175,195,315,335,355,375,395,515,535,555, %T A061829 575,595,715,735,755,775,795,915,935,955,975,995,1115,1135,1155,1175, %U A061829 1195,1315,1335,1355,1375,1395,1515,1535,1555,1575,1595,1715,1735,1755 %N A061829 Multiples of 5 having only odd digits. %H A061829 Robert Israel, <a href="/A061829/b061829.txt">Table of n, a(n) for n = 1..10000</a> %H A061829 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %F A061829 From _Robert Israel_, Jun 10 2018: (Start) %F A061829 For n > 1, a(n) = 10*A014261(n-1) + 5. %F A061829 a(5*n) = 25 + 10*a(n). %F A061829 a(5*n+1) = 45 + 10*a(n). %F A061829 a(5*n+2) = -35 + 10*a(n+1). %F A061829 a(5*n+3) = -15 + 10*a(n+1). %F A061829 a(5*n+4) = 5 + 10*a(n+1). %F A061829 G.f. g(x) satisfies g(x) = -25 - 40*x + 5*(5+9*x-7*x^2-3*x^3+x^4)/(1-x^5) + 10*(1-x^5)*g(x^5)/(x^3*(1-x)). %F A061829 (End) %e A061829 135 = 5*27 is a term having all odd digits. %p A061829 L[1]:= [5]: %p A061829 for n from 2 to 4 do %p A061829 L[n]:= [seq(op(map(`+`,L[n-1],i*10^(n-1))),i=1..9,2)] %p A061829 od: %p A061829 map(op, [seq(L[i],i=1..4)]); # _Robert Israel_, Jun 10 2018 %t A061829 Select[5 Range[370],Select[IntegerDigits[#],EvenQ]=={}&] (* _Harvey P. Dale_, Feb 07 2011 *) %o A061829 (PARI) is(n)=n%10==5 && #setintersect(Set(digits(n)),[0,2,4,6,8])==0 \\ _Charles R Greathouse IV_, Feb 15 2017 %Y A061829 Cf. A014261. %K A061829 nonn,base,easy %O A061829 1,1 %A A061829 _Amarnath Murthy_, May 29 2001 %E A061829 More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001