cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061829 Multiples of 5 having only odd digits.

This page as a plain text file.
%I A061829 #17 Jun 10 2018 14:44:42
%S A061829 5,15,35,55,75,95,115,135,155,175,195,315,335,355,375,395,515,535,555,
%T A061829 575,595,715,735,755,775,795,915,935,955,975,995,1115,1135,1155,1175,
%U A061829 1195,1315,1335,1355,1375,1395,1515,1535,1555,1575,1595,1715,1735,1755
%N A061829 Multiples of 5 having only odd digits.
%H A061829 Robert Israel, <a href="/A061829/b061829.txt">Table of n, a(n) for n = 1..10000</a>
%H A061829 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A061829 From _Robert Israel_, Jun 10 2018: (Start)
%F A061829 For n > 1, a(n) = 10*A014261(n-1) + 5.
%F A061829 a(5*n)   =  25 + 10*a(n).
%F A061829 a(5*n+1) =  45 + 10*a(n).
%F A061829 a(5*n+2) = -35 + 10*a(n+1).
%F A061829 a(5*n+3) = -15 + 10*a(n+1).
%F A061829 a(5*n+4) =   5 + 10*a(n+1).
%F A061829 G.f. g(x) satisfies g(x) = -25 - 40*x + 5*(5+9*x-7*x^2-3*x^3+x^4)/(1-x^5) + 10*(1-x^5)*g(x^5)/(x^3*(1-x)).
%F A061829 (End)
%e A061829 135 = 5*27 is a term having all odd digits.
%p A061829 L[1]:= [5]:
%p A061829 for n from 2 to 4 do
%p A061829   L[n]:= [seq(op(map(`+`,L[n-1],i*10^(n-1))),i=1..9,2)]
%p A061829 od:
%p A061829 map(op, [seq(L[i],i=1..4)]); # _Robert Israel_, Jun 10 2018
%t A061829 Select[5 Range[370],Select[IntegerDigits[#],EvenQ]=={}&]  (* _Harvey P. Dale_, Feb 07 2011 *)
%o A061829 (PARI) is(n)=n%10==5 && #setintersect(Set(digits(n)),[0,2,4,6,8])==0 \\ _Charles R Greathouse IV_, Feb 15 2017
%Y A061829 Cf. A014261.
%K A061829 nonn,base,easy
%O A061829 1,1
%A A061829 _Amarnath Murthy_, May 29 2001
%E A061829 More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001