cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061843 Squares which remain squares if you increment every digit by 1.

This page as a plain text file.
%I A061843 #24 Jun 30 2025 20:45:32
%S A061843 0,25,2025,13225,4862025,60415182025,207612366025,153668543313582025,
%T A061843 13876266042653742025,20761288044852366025,47285734107144405625,
%U A061843 406066810454367265225,141704161680410868660551655625
%N A061843 Squares which remain squares if you increment every digit by 1.
%C A061843 Incrementing each digit means b^2-a^2 = R_n, the n-digit repunit (10^n-1)/9; so solutions must be of the form a = (u-v)/2, b = (u+v)/2, where u * v = R_n. It remains to check that this is in the right range and a has no 9's. - _Franklin T. Adams-Watters_, May 25 2006
%H A061843 Max Alekseyev, <a href="/A061843/b061843.txt">Table of n, a(n) for n = 1..78</a> (contains all terms below 10^262)
%e A061843 13225 = 115^2 and 24336 = 156^2.
%t A061843 Select[Range[0,500000]^2,With[{lst=IntegerDigits[#]+1},Max[lst]<10&&IntegerQ[Sqrt[FromDigits[lst]]]&]] (* The program generates the first 7 terms of the sequence. *)  (* _Harvey P. Dale_, Jan 26 2025 *)
%o A061843 (PARI) hasdigit(n, d, b=10) = local(r); r=0;while(r==0&&n>=1,if(n%b==d,r=1,n\=b));r
%o A061843 /* Generates all positive n-digit solutions (in reverse order) */
%o A061843 A061843s(n) = local(f, nf, v, i, ru, lb, ub, x); lb=10^(n-1);ub=10^n-1;ru=ub\9;f=divisors(ru);v=[];nf=matsize(f)[2];for(i=1,nf\2,x=( (f[nf+1-i]-f[i])\2)^2;if(x>=lb&&x<=ub&&!hasdigit(x,9),v=concat(v,[x])));v \\ _Franklin T. Adams-Watters_, May 25 2006
%Y A061843 Subsequence of A117755.
%Y A061843 Cf. A002275, A061844.
%K A061843 base,nonn
%O A061843 1,2
%A A061843 _Erich Friedman_, Jun 23 2001
%E A061843 More terms from _Franklin T. Adams-Watters_, May 25 2006