cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061844 Squares that remain squares if you decrease every digit by 1.

This page as a plain text file.
%I A061844 #55 Sep 12 2023 12:10:45
%S A061844 1,36,3136,24336,5973136,71526293136,318723477136,264779654424693136,
%T A061844 24987377153764853136,31872399155963477136,58396845218255516736,
%U A061844 517177921565478376336,252815272791521979771662766736,518364744896318875336864648336,554692513628187865132829886736
%N A061844 Squares that remain squares if you decrease every digit by 1.
%C A061844 The terms may be calculated efficiently by solving x^2 - y^2 = 111...1; this is done by factoring 111..1 = (x + y)(x - y).
%C A061844 Note that some solutions will produce a square containing a zero digit so the solution is impermissible; for example, 460^2 - 317^2 = 111111 but 460^2 = 211600. - _Wendy Appleby_, Sep 20 2015
%C A061844 Except for a(1) = 1, we don't allow decreasing the digits to create a leading 0. Thus 126736 = 356^2 is not included, even though 126736 - 111111 = 15625 = 125^2. - _Robert Israel_, Dec 30 2015
%C A061844 If it exists, a(79) > 10^262. - _Max Alekseyev_, Sep 05 2023
%C A061844 From _Robert Israel_, Jan 04 2016: (Start)
%C A061844 The sequence may well be finite.
%C A061844 It is known that A000005(n) = O(n^epsilon) for all epsilon>0.
%C A061844 Therefore if 1 < c < 10/9, for d sufficiently large (10^d-1)/9 has fewer than c^d divisors, and thus fewer than c^d possible candidates for x^2 having d digits.
%C A061844 Heuristically, x^2 has probability ~ (9/10)^d of having no digits 0.
%C A061844 Thus we expect fewer than (9c/10)^d terms having d digits.
%C A061844 Since Sum_d (9c/10)^d converges, we expect only finitely many terms.
%C A061844 Of course, this is only a heuristic argument, but it seems to fit well with the data. (End)
%H A061844 JungHwan Min, <a href="/A061844/b061844.txt">Table of n, a(n) for n = 1..78</a>
%F A061844 a(n) = A048379(A061843(n)). - _Max Alekseyev_, Jul 26 2023
%e A061844 13225 = 115^2 and 24336 = 156^2.
%p A061844 A:= {1}:
%p A061844 for d from 1 to 96 do
%p A061844   r:= (10^d-1)/9;
%p A061844   f:= subs(X=10,factors((X^d-1)/(X-1))[2]);
%p A061844   q:= map(t -> op(map(s -> [s[1],t[2]*s[2]], ifactors(t[1])[2])),f);
%p A061844   divs:= {1};
%p A061844 for t in q do
%p A061844     divs:= map(x -> seq(x*t[1]^j,j=0..t[2]),divs)
%p A061844   od;
%p A061844   for t in select(s -> s^2 > r, divs) do
%p A061844     x:= (t + r/t)/2;
%p A061844     if ilog10(x^2) = d-1 and x^2 > 2*10^(d-1) and not has(convert(x^2,base,10),0) then
%p A061844       A:= A union {x^2};
%p A061844     fi
%p A061844   od
%p A061844 od:
%p A061844 sort(convert(A,list)); # _Robert Israel_, Dec 30 2015
%t A061844 For[digits = 1, digits <= 30, digits++, n = (10^digits - 1)/9; divList = Select[Divisors[n], (#1 >= Sqrt[n])&]; For[j = 1, j <= Length[divList], j++, x = (divList[[j]] + n/divList[[j]])/2; y = (divList[[j]] - n/divList[[j]])/2; dx = IntegerDigits[x^2]; dy = IntegerDigits[y^2]; If[(Length[dx] == digits) && (Length[dy] == digits) && (Select[dx, (#1 == 0)&] == {}), Print[x^2]]]]
%t A061844 Flatten@Prepend[Table[Select[#[[Ceiling[(Length[#] + 1)/2] ;;]] &@(# + Reverse@#)/2 &@Divisors[(10^n - 1)/9], IntegerLength[#^2] == n && (#[[1]] != 1 && FreeQ[#, 0]&[IntegerDigits[#^2]])&]^2, {n, 30}], 1] (* _JungHwan Min_, Dec 29 2015 *)
%t A061844 Join[{1},Select[Select[Flatten[Table[#^2&/@(x/.Solve[{x^2-y^2 == FromDigits[ PadRight[{},n,1]],x>0,y>0},{x,y},Integers]),{n,2,30}]], DigitCount[ #,10,0]==0&&IntegerDigits[#][[1]]>1&]// Union,IntegerQ[ Sqrt[ FromDigits[IntegerDigits[#]-1]]]&]] (* _Harvey P. Dale_, Apr 16 2016 *)
%Y A061844 Cf. A048379, A052382, A061843, A117755.
%K A061844 base,nonn,nice
%O A061844 1,2
%A A061844 _Erich Friedman_, Jun 23 2001
%E A061844 More terms and program from Jonathan Cross (jcross(AT)wcox.com), Oct 08 2001