A061852 Digital representation of m contains only either 1's or 2's (but not both 1's and 2's) and 0's, is palindromic and contains no singleton 2's, 1's or 0's.
11, 22, 111, 222, 1111, 2222, 11111, 22222, 110011, 111111, 220022, 222222, 1100011, 1111111, 2200022, 2222222, 11000011, 11100111, 11111111, 22000022, 22200222, 22222222, 110000011, 111000111, 111111111, 220000022, 222000222
Offset: 1
Examples
From _M. F. Hasler_, Oct 17 2022: (Start) Written in rows, where each row has terms of given length and given digit set (either no 2 or no 1), the sequence starts: row | terms ------+------------------------------------ 1 | 11 2 | 22 3 | 111 4 | 222 5 | 1111 6 | 2222 7 | 11111 8 | 22222 9 | 110011, 111111 10 | 220022, 222222 Then for any n >= 1, row 2n = 2*(row 2n-1) and row 2n-1 = (terms in A061851 with n+1 digits), and the number of terms in row n is Fibonacci(ceiling(n/4)) = A000045(A002265(n+3)), and their length (number of digits) is ceiling(n/2)+1 = floor((n+3)/2). (End)
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
A061852_row(n)=A061851_row(n\/2+1)*(2-n%2) \\ Note: This refers to rows as defined in EXAMPLE, while A061851_row gives the n-digit terms. - M. F. Hasler, Oct 17 2022
Formula
a(n) = A008919(n)/99.