cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061913 Numerators of the determinant of matrix (M(n) - H(n)), where H(n) is the n-th Hilbert matrix and M(n) is an n X n matrix with i,j-th entry i+j-1.

This page as a plain text file.
%I A061913 #15 Jan 20 2025 12:50:40
%S A061913 1,0,-9,32,-337,319,-347,1609,-21569,21911,-82601,12211,-247249,50003,
%T A061913 -624457,16297,-42209,91127,-91159,488749,-1773467,1782853,-9429289,
%U A061913 6156767,-548213,376169,-25705577,732761,-84793,343823,-60683401,36941321,-89392129,53762297,-1478431
%N A061913 Numerators of the determinant of matrix (M(n) - H(n)), where H(n) is the n-th Hilbert matrix and M(n) is an n X n matrix with i,j-th entry i+j-1.
%C A061913 The n-th Hilbert matrix is an n X n matrix with i,j-th entry 1/(i+j-1). Thus (M(n) - H(n)) has i,j-th entry (i+j-1) - 1/(i+j-1).
%t A061913 a[n_]:=Numerator[Det[Table[(i+j-1) - 1/(i+j-1),{i,n},{j,n}]]]; Join[{1},Array[a,34]] (* _Stefano Spezia_, Jan 19 2025 *)
%o A061913 (PARI) a(n) = numerator(matdet(matrix(n, n, i, j, (i+j-1) - 1/(i+j-1)))); \\ _Michel Marcus_, Jan 19 2025
%Y A061913 Cf. A005249, A380297 (denominators).
%K A061913 sign,frac
%O A061913 0,3
%A A061913 _Asher Auel_, May 20 2001
%E A061913 a(0) = 1 prepended by _Stefano Spezia_, Jan 19 2025