cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061920 A list of equal temperaments (equal divisions of the octave) whose nearest scale steps are closer and closer approximations to the 7 pairs of complementary target ratios needed to express the 12 unsymmetrical steps of the untempered (Just Intonation) scale known as the Duodene: 3/2 and 4/3, 5/4 and 8/5, 6/5 and 5/3, 9/8 and 16/9, 10/9 and 9/5, 16/15 and 15/8 and 45/32 and 64/45.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 19, 22, 31, 34, 41, 53, 118, 171, 289, 323, 376, 441, 494, 559, 612, 1171, 1783, 2513, 3684, 4296, 12888, 16572, 20868, 25164, 44249, 48545, 52841, 57137, 69413, 73709, 78005, 151714, 229719, 307724, 537443, 714321
Offset: 1

Views

Author

Mark William Rankin (MarkRankin95511(AT)yahoo.com), May 15 2001

Keywords

Comments

The sequence was found by a computer search of all the equal divisions of the octave from 1 to 714321. The numerical value of each term represents a musical scale based on an equal division of the octave. The term 12, for example, signifies the scale which is formed by dividing the octave into 12 equal parts.

Examples

			118 = 53 + [34 + 31]; Again, 69413 = 57137 + [4296 + 3684 + 2513 + 1783].
		

Crossrefs

Formula

Recurrence Rule: The next term equals the current term plus one or more previous terms: a(n+1) = a(n) + a(n-x)... + a(n-y)... + a(n-z), etc.

A061921 A list of equal temperaments (equal divisions of the octave) whose nearest scale steps are closer and closer approximations to the 11 pairs of target ratios needed to express the 22 steps of the theoretical Hindu scale known as the 22 Srutis: 45/32 and 64/45, 27/20 and 40/27, 4/3 and 3/2, 81/64 and 128/81, 5/4 and 8/5, 6/5 and 5/3, 32/27 and 27/16, 9/8 and 16/9, 10/9 and 9/5, 16/15 and 15/8, 256/243 and 243/128.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 29, 30, 32, 34, 37, 39, 40, 41, 53, 118, 171, 323, 335, 376, 388, 441, 494, 506, 559, 612, 1171, 1783, 2513, 3072, 3125, 3684, 4296, 12276, 16572, 20868, 40565, 44861, 48545, 52841, 57137, 61433, 69413, 73709
Offset: 1

Views

Author

Mark William Rankin (MarkRankin95511(AT)Yahoo.com), May 15 2001

Keywords

Comments

The sequence was found by a computer search of all the equal divisions of the octave from 1 to 73709. The numerical value of each term represents a musical scale based on an equal division of the octave. The term 32, for example, signifies the scale which is formed by dividing the octave into 32 equal parts.

Examples

			118 = 53 + [34 + 31]; Again, 229719 = 78005 + [73709 + 69413 + 4296 + 3684 + 612].
		

Crossrefs

Formula

Recurrence rule: The next term equals the current term plus one or more previous terms: a(n+1) = a(n) + a(n-x)... + a(n-y)... + a(n-z), etc.
Showing 1-2 of 2 results.