This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061925 #58 Dec 29 2024 14:26:49 %S A061925 1,2,3,6,9,14,19,26,33,42,51,62,73,86,99,114,129,146,163,182,201,222, %T A061925 243,266,289,314,339,366,393,422,451,482,513,546,579,614,649,686,723, %U A061925 762,801,842,883,926,969,1014,1059,1106,1153,1202,1251,1302,1353,1406 %N A061925 a(n) = ceiling(n^2/2) + 1. %C A061925 a(n+1) gives index of the first occurrence of n in A100795. - _Amarnath Murthy_, Dec 05 2004 %C A061925 First term in each group in A074148. - _Amarnath Murthy_, Aug 28 2002 %C A061925 From _Christian Barrientos_, Jan 01 2021: (Start) %C A061925 For n >= 3, a(n) is the number of square polyominoes with at least 2n - 2 cells whose bounding box has size 2 X n. %C A061925 For n = 3, there are 6 square polyominoes with a bounding box of size 2 X 3: %C A061925 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %C A061925 |_|_|_| |_|_|_| |_|_|_| |_|_|_| |_|_|_| |_|_|_ %C A061925 |_|_|_| |_|_| |_| |_| |_| |_| |_|_| %C A061925 (End) %C A061925 Except for a(2), a(n) agrees with the lower matching number of the (n+1) X (n+1) bishop graph up to at least n = 13. - _Eric W. Weisstein_, Dec 23 2024 %H A061925 Harry J. Smith, <a href="/A061925/b061925.txt">Table of n, a(n) for n = 0..1000</a> %H A061925 Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, <a href="https://arxiv.org/abs/2312.05145">Cyclic permutations avoiding patterns in both one-line and cycle forms</a>, arXiv:2312.05145 [math.CO], 2023. See p. 2. %H A061925 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a>. %H A061925 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LowerMatchingNumber.html">Lower Matching Number</a>. %H A061925 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A061925 a(n) = a(n-1) + 2*floor((n-1)/2) + 1 = A061926(3, k) = 2*A002620(n+1) - (n-1) = A000982(n) + 1. %F A061925 a(2*n) = a(2*n-1) + 2*n - 1 = 2*n^2 + 1 = A058331(n). %F A061925 a(2*n+1) = a(2*n) + 2*n + 1 = 2*(n^2 + n + 1) = A051890(n+1). %F A061925 a(n) = floor((n^2+3)/2). - _Gary Detlefs_, Feb 13 2010 %F A061925 From _R. J. Mathar_, Feb 19 2010: (Start) %F A061925 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). %F A061925 G.f.: (1-x^2+2*x^3)/((1+x) * (1-x)^3). (End) %F A061925 a(n) = (2*n^2 - (-1)^n + 5)/4. - _Bruno Berselli_, Sep 29 2011 %F A061925 a(n) = A007590(n+1) - n + 1. - _Wesley Ivan Hurt_, Jul 15 2013 %F A061925 a(n) + a(n+1) = A027688(n). a(n+1) - a(n) = A109613(n). - _R. J. Mathar_, Jul 20 2013 %F A061925 E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x))/2. - _Stefano Spezia_, May 07 2021 %p A061925 seq(floor((n^2+3)/2),n=0..25); # _Gary Detlefs_, Feb 13 2010 %t A061925 Table[Ceiling[n^2/2]+1,{n,0,60}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 02 2011 *) %t A061925 LinearRecurrence[{2,0,-2,1},{1,2,3,6},60] (* _Harvey P. Dale_, Jan 03 2024 *) %o A061925 (PARI) a(n) = { ceil(n^2/2) + 1 } \\ _Harry J. Smith_, Jul 29 2009 %Y A061925 Cf. A100795, A074147-A074149. %K A061925 nonn,easy %O A061925 0,2 %A A061925 _Henry Bottomley_, May 17 2001 %E A061925 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 09 2007