This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061928 #24 Apr 16 2020 22:52:07 %S A061928 6,12,12,20,30,20,30,60,60,30,42,105,140,105,42,56,168,280,280,168,56, %T A061928 72,252,504,630,504,252,72,90,360,840,1260,1260,840,360,90,110,495, %U A061928 1320,2310,2772,2310,1320,495,110,132,660,1980,3960,5544,5544,3960 %N A061928 Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals. %C A061928 beta(n+1,m+1) = Integral_{x=0..1} x^n * (1-x)^m dx for real n, m. %D A061928 G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26. %F A061928 beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!. %e A061928 Antidiagonals: %e A061928 6, %e A061928 12, 12, %e A061928 20, 30, 20, %e A061928 30, 60, 60, 30, %e A061928 ... %e A061928 Array: %e A061928 6 12 20 30 42 %e A061928 12 30 60 105 168 %e A061928 20 60 140 280 504 %e A061928 30 105 280 630 1260 %e A061928 42 168 504 1260 2772 %t A061928 t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* _Jean-François Alcover_, Oct 11 2011 *) %o A061928 (PARI) A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^i*(1-x)^j),x,1)) /* _Michael Somos_, Feb 05 2004 */ %o A061928 (PARI) A(i,j)=if(i<1||j<1,0,1/sum(k=0,i,(-1)^k*binomial(i,k)/(j+1+k))) /* _Michael Somos_, Feb 05 2004 */ %o A061928 (Python) %o A061928 from sympy import factorial as f %o A061928 def T(n, m): return f(n + m + 1)/(f(n)*f(m)) %o A061928 for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # _Indranil Ghosh_, Apr 29 2017 %Y A061928 Rows: 1/b(n, 2): A002378, 1/b(n, 3): A027480, 1/b(n, 4): A033488. Diagonals: 1/b(n, n): A002457, 1/b(n, n+1) A005430, 1/b(n, n+2): A000917. %Y A061928 T(i, j)=A003506(i+1, j+1). %K A061928 nonn,tabl,easy,nice %O A061928 1,1 %A A061928 _Frank Ellermann_, May 22 2001