This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061931 #23 May 26 2024 12:52:23 %S A061931 1,3,7,39,63,523,4983,25007,892217,1142775,1381311,1751751 %N A061931 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 2 (most significant digit on right). %C A061931 This sequence differs from A029495 in that all least significant zeros are removed before concatenation. %C A061931 No more terms < 10^7. [_Lars Blomberg_, Oct 17 2011] %H A061931 <a href="/index/N#concat">Index entries for related sequences</a> %e A061931 1234567 -> (1)(01)(11)(001)(101)(011)(111) base 2 -> 1111110111111 base 2 = 8127 and 7 divides 8127. %t A061931 b = 2; c = {}; Select[Range[10^4], Divisible[FromDigits[ %t A061931 c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* _Robert Price_, Mar 07 2020 *) %o A061931 (Python) %o A061931 def agen(): %o A061931 k, concat = 1, 1 %o A061931 while True: %o A061931 if concat%k == 0: yield k %o A061931 revbink_even = (bin(k+1)[2:])[::-1] %o A061931 revbink_odd = '1' + revbink_even[1:] %o A061931 add_str = revbink_even[revbink_even.index('1'):] + revbink_odd %o A061931 concat = (concat << len(add_str)) + int(add_str, 2) %o A061931 k += 2 %o A061931 g = agen() %o A061931 print([next(g) for i in range(8)]) # _Michael S. Branicky_, Jan 03 2021 %Y A061931 Cf. A029447-A029470, A029471-A029494, A029495-A029518, A029519-A029542, A061931-A061954, A061955-A061978. %K A061931 nonn,base,more %O A061931 1,2 %A A061931 Larry Reeves (larryr(AT)acm.org), May 24 2001 %E A061931 Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002 %E A061931 a(9)-a(12) from _Lars Blomberg_, Oct 17 2011