This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061980 #7 Jun 19 2022 02:20:48 %S A061980 1,0,3,0,2,9,0,1,8,27,0,0,6,26,81,0,0,4,23,80,243,0,0,3,20,76,242,729, %T A061980 0,0,3,17,72,237,728,2187,0,0,1,17,66,232,722,2186,6561,0,0,1,11,66, %U A061980 222,716,2179,6560,19683,0,0,1,11,54,222,701,2172,6552,19682,59049 %N A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals. %H A061980 G. C. Greubel, <a href="/A061980/b061980.txt">Antidiagonals n = 0..50, flattened</a> %F A061980 A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1. %F A061980 T(n, k) = A(k, n-k). %F A061980 Sum_{k=0..n} A(n, k) = A000400(n). %F A061980 T(n, n) = A(n, 0) = A000244(n). - _G. C. Greubel_, Jun 18 2022 %e A061980 Array begins as: %e A061980 1, 0, 0, 0, 0, 0, 0, ...; %e A061980 3, 2, 1, 0, 0, 0, 0, ...; %e A061980 9, 8, 6, 4, 3, 3, 1, ...; %e A061980 27, 26, 23, 20, 17, 17, 11, ...; %e A061980 81, 80, 76, 72, 66, 66, 54, ...; %e A061980 243, 242, 237, 232, 222, 222, 202, ...; %e A061980 729, 728, 722, 716, 701, 701, 671, ...; %e A061980 Antidiagonal rows begin as: %e A061980 1; %e A061980 0, 3; %e A061980 0, 2, 9; %e A061980 0, 1, 8, 27; %e A061980 0, 0, 6, 26, 81; %e A061980 0, 0, 4, 23, 80, 243; %e A061980 0, 0, 3, 20, 76, 242, 729; %e A061980 0, 0, 3, 17, 72, 237, 728, 2187; %e A061980 0, 0, 1, 17, 66, 232, 722, 2186, 6561; %t A061980 A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]]; %t A061980 T[n_, k_]:= A[k, n-k]; %t A061980 Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 18 2022 *) %o A061980 (SageMath) %o A061980 @CachedFunction %o A061980 def A(n,k): %o A061980 if (n==0): return 0^k %o A061980 else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3)) %o A061980 def T(n, k): return A(k, n-k) %o A061980 flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 18 2022 %Y A061980 Row sums are 6^n: A000400. %Y A061980 Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc. %Y A061980 Cf. A000244, A061290, A061930, A061979, A061984, A061987. %K A061980 nonn,tabl %O A061980 0,3 %A A061980 _Henry Bottomley_, May 24 2001