This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061996 #20 Apr 29 2022 03:49:04 %S A061996 0,0,0,8,140,964,3920,11860,29708,65240,129984,240240,418220,693308, %T A061996 1103440,1696604,2532460,3684080,5239808,7305240,10005324,13486580, %U A061996 17919440,23500708,30456140,39043144,49553600,62316800 %N A061996 Number of ways to place 3 nonattacking kings on an n X n board. %H A061996 Vincenzo Librandi, <a href="/A061996/b061996.txt">Table of n, a(n) for n = 0..1000</a> %H A061996 Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Placing non-attacking queens and kings on boards of various sizes</a>, part of "Between chessboard and computer", 1996, pp. 204 - 206. %H A061996 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A061996 G.f.: 4*x^3*(2 + 21*x + 38*x^2 - 42*x^3 + 11*x^4)/(1 - x)^7. %F A061996 Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7), n >= 8. %F A061996 a(n) = (n-1)*(n-2)*(n^4 + 3*n^3 - 20*n^2 - 30*n + 132)/6, n >= 1. %F A061996 a(n) = A193580(n,3). - _R. J. Mathar_, Sep 03 2016 %F A061996 E.g.f.: -44 + (1/6)*(264 -264*x +132*x^2 -36*x^3 +38*x^4 +15*x^5 +x^6)*exp(x). - _G. C. Greubel_, Apr 29 2022 %t A061996 CoefficientList[Series[4x^3(2 +21x +38x^2 -42x^3 +11x^4)/(1-x)^7, {x, 0, 40}], x] (* _Vincenzo Librandi_, May 02 2013 *) %o A061996 (SageMath) [(n-1)*(n-2)*(n^4+3*n^3-20*n^2-30*n+132)/6 -44*bool(n==0) for n in (0..40)] # _G. C. Greubel_, Apr 29 2022 %Y A061996 Cf. A061995, A061997, A061998, A193580. %K A061996 nonn,easy %O A061996 0,4 %A A061996 Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001