This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062001 #10 May 03 2022 11:03:37 %S A062001 1,2,1,3,2,1,4,4,2,1,5,7,4,2,1,6,10,8,4,2,1,7,13,15,8,4,2,1,8,16,22, %T A062001 16,8,4,2,1,9,19,29,31,16,8,4,2,1,10,22,36,46,32,16,8,4,2,1,11,25,43, %U A062001 61,63,32,16,8,4,2,1,12,28,50,76,94,64,32,16,8,4,2,1,13,31,57,91,125,127,64,32,16,8,4,2,1 %N A062001 Table by antidiagonals of n-Stohr sequences: T(n,k) is least positive integer not the sum of at most n distinct terms in the n-th row from T(n,1) through to T(n,k-1). %H A062001 G. C. Greubel, <a href="/A062001/b062001.txt">Antidiagonals n = 1..50, flattened</a> %F A062001 If k <= n+1 then A(n, k) = 2^(k-1), while if k > n+1, A(n, k) = (2^n - 1)*(k - n) + 1 (array). %F A062001 T(n, k) = A(k, n-k+1) (antidiagonals). %F A062001 T(2*n-1, n) = A000079(n-1), n >= 1. %F A062001 T(2*n, n) = A000079(n), n >= 1. %F A062001 T(2*n+1, n) = A000225(n+1), n >= 1. %F A062001 T(2*n+2, n) = A033484(n), n >= 1. %F A062001 T(2*n+3, n) = A036563(n+3), n >= 1. %F A062001 T(2*n+4, n) = A048487(n), n >= 1. %F A062001 From _G. C. Greubel_, May 03 2022: (Start) %F A062001 T(n, k) = (2^k - 1)*(n-2*k+1) + 1 for k < n/2, otherwise 2^(n-k). %F A062001 T(2*n+5, n) = A048488(n), n >= 1. %F A062001 T(2*n+6, n) = A048489(n), n >= 1. %F A062001 T(2*n+7, n) = A048490(n), n >= 1. %F A062001 T(2*n+8, n) = A048491(n), n >= 1. %F A062001 T(2*n+9, n) = A139634(n), n >= 1. %F A062001 T(2*n+10, n) = A139635(n), n >= 1. %F A062001 T(2*n+11, n) = A139697(n), n >= 1. (End) %e A062001 Array begins as: %e A062001 1, 2, 3, 4, 5, 6, 7, 8, 9, ... A000027; %e A062001 1, 2, 4, 7, 10, 13, 16, 19, 22, ... A033627; %e A062001 1, 2, 4, 8, 15, 22, 29, 36, 43, ... A026474; %e A062001 1, 2, 4, 8, 16, 31, 46, 61, 76, ... A051039; %e A062001 1, 2, 4, 8, 16, 32, 63, 94, 125, ... A051040; %e A062001 1, 2, 4, 8, 16, 32, 64, 127, 190, ... ; %e A062001 1, 2, 4, 8, 16, 32, 64, 128, 255, ... ; %e A062001 1, 2, 4, 8, 16, 32, 64, 128, 256, ... ; %e A062001 1, 2, 4, 8, 16, 32, 64, 128, 256, ... ; %e A062001 Antidiagonal triangle begins as: %e A062001 1; %e A062001 2, 1; %e A062001 3, 2, 1; %e A062001 4, 4, 2, 1; %e A062001 5, 7, 4, 2, 1; %e A062001 6, 10, 8, 4, 2, 1; %e A062001 7, 13, 15, 8, 4, 2, 1; %e A062001 8, 16, 22, 16, 8, 4, 2, 1; %e A062001 9, 19, 29, 31, 16, 8, 4, 2, 1; %e A062001 10, 22, 36, 46, 32, 16, 8, 4, 2, 1; %e A062001 11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1; %e A062001 12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1; %e A062001 13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1; %t A062001 T[n_, k_]:= If[k<n/2, (2^k -1)*(n-2*k+1) +1, 2^(n-k)]; %t A062001 Table[T[n, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, May 03 2022 *) %o A062001 (SageMath) %o A062001 def A062001(n,k): %o A062001 if (k<n/2): return (2^k -1)*(n-2*k+1) +1 %o A062001 else: return 2^(n-k) %o A062001 flatten([[A062001(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, May 03 2022 %Y A062001 Rows include A000027, A033627, A026474, A051039, A051040. %Y A062001 Diagonals include A000079, A000225, A033484, A036563, A048487. %Y A062001 Cf. A048488, A048489, A048490, A048491, A139634, A139635, A139697. %Y A062001 A048483 can be seen as half this table. %K A062001 nonn,tabl %O A062001 1,2 %A A062001 _Henry Bottomley_, May 29 2001