This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062022 #13 May 05 2022 04:41:52 %S A062022 0,1,14,59,256,581,1298,2287,4004,7329,11338,17915,26660,36637,49406, %T A062022 67239,91252,117585,151730,191819,235112,289013,350842,425919,521300, %U A062022 628001,740666,865899,997744,1143501,1345454,1565639,1815068,2074761 %N A062022 a(n) = Sum_{k=1..n} Sum_{j=1..k} (prime(k) - prime(j))^2. %H A062022 G. C. Greubel, <a href="/A062022/b062022.txt">Table of n, a(n) for n = 1..1000</a> %F A062022 From _G. C. Greubel_, May 04 2022: (Start) %F A062022 a(n) = a(n-1) + n*prime(n)^2 + Sum_{k=1..n} prime(k)*(prime(k) - 2*prime(n)), with a(0) = a(1) = 0. %F A062022 a(n) = n*Sum_{j=1..n} prime(j)^2 - (Sum_{j=1..n} prime(j))^2 = n*A024450(n) - A007504(n)^2. (End) %e A062022 a(3) = (5-2)^2 + (5-3)^2 + (3-2)^2 = 14, sum of the squared differences of all pairs of the first 3 primes. %p A062022 A062022 := proc(n) %p A062022 local a,i,j ; %p A062022 a := 0 ; %p A062022 for j from 1 to n do %p A062022 for i from 1 to j-1 do %p A062022 a := a+(ithprime(j)-ithprime(i))^2 ; %p A062022 end do: %p A062022 end do: %p A062022 a ; %p A062022 end proc: %p A062022 seq(A062022(n), n=1..10); # _R. J. Mathar_, Oct 03 2014 %t A062022 a[n_]:= a[n]= n*Sum[Prime[k]^2, {k,n}] - (Sum[Prime[j], {j,n}])^2; %t A062022 Table[a[n], {n, 50}] (* _G. C. Greubel_, May 04 2022 *) %o A062022 (SageMath) %o A062022 @CachedFunction %o A062022 def a(n): return n*sum(nth_prime(j)^2 for j in (1..n)) - (sum(nth_prime(j) for j in (1..n)))^2 %o A062022 [a(n) for n in (1..50)] # _G. C. Greubel_, May 04 2022 %Y A062022 Cf. A000040, A007504, A024450, A062020, A062021. %K A062022 nonn %O A062022 1,3 %A A062022 _Amarnath Murthy_, Jun 02 2001 %E A062022 More terms from _Matthew Conroy_, Jun 11 2001