This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062023 #23 Dec 07 2024 13:39:14 %S A062023 1,5,45,544,8125,143856,2941225,68157440,1764915561,50500000000, %T A062023 1582182900661,53868106874880,1980337235410885,78180905165533184, %U A062023 3298800640869140625,148150413341979836416,7055872821971695929745,355210628457538186444800 %N A062023 a(n) = (n^(n+1) + n^(n-1))/2. %C A062023 a(n) is the number of monotonic runs over all length n words on an alphabet of n letters. - _Geoffrey Critzer_, Jun 25 2013 %H A062023 Harry J. Smith, <a href="/A062023/b062023.txt">Table of n, a(n) for n = 1..100</a> %F A062023 E.g.f.: (-1/2)*LambertW(-x)*(1 + 1/(1 + LambertW(-x))^3). - _G. C. Greubel_, May 04 2022 %e A062023 a(3) = {3^4 +3^2}/2 = 45. %t A062023 Table[(n^(n-1)+n^(n+1))/2,{n,1,20}] (* _Geoffrey Critzer_, Jun 25 2013 *) %o A062023 (PARI) a(n) = { (n^(n+1) + n^(n-1))/2 } \\ _Harry J. Smith_, Jul 29 2009 %o A062023 (SageMath) [(n^(n+1) + n^(n-1))/2 for n in (1..20)] # _G. C. Greubel_, May 04 2022 %Y A062023 Cf. A229078. %K A062023 nonn %O A062023 1,2 %A A062023 _Amarnath Murthy_, Jun 02 2001 %E A062023 More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001