This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062032 #21 Jun 22 2025 05:35:16 %S A062032 1,15,693,62985,9454725,2118331215,662496582825,275735605996305, %T A062032 147364622598587625,98358760729571316975,80185770642041047108125, %U A062032 78405694972326706112753625,90569612902695107431619494125,122020670469540010360975931523375,189638875693941730653122520269900625 %N A062032 Group odd numbers into (1), (3,5), (7,9,11), (13,15,17,19), ...; a(n) = product of n-th group. %H A062032 Harry J. Smith, <a href="/A062032/b062032.txt">Table of n, a(n) for n=1..100</a> %F A062032 a(n) = Product_{k=0..n-1} (2*k + n*(n-1) + 1). - _Harry J. Smith_, Jul 30 2009 %F A062032 a(n) = (Gamma(2*binomial(n+1, 2) + 1)*Gamma(binomial(n, 2) + 1))/(2^n*Gamma(binomial(n+1, 2) + 1)*Gamma(2*binomial(n, 2) + 1)). - _G. C. Greubel_, May 06 2022 %F A062032 a(n) ~ n^(2*n). - _Vaclav Kotesovec_, Jun 09 2025 %e A062032 a(3) = 7*9*11 = 693. %t A062032 len=20; Times@@@FoldPairList[TakeDrop,Range[1,len^2+len-1,2],Range[len]] (* The program uses the FoldPairList and TakeDrop functions from Mathematica version 10 *) (* _Harvey P. Dale_, Jul 29 2015 *) %t A062032 Table[(Gamma[2*Binomial[n+1,2] +1]*Gamma[Binomial[n,2] +1])/(2^n*Gamma[Binomial[n +1,2] +1]*Gamma[2*Binomial[n,2] +1]), {n, 30}] (* _G. C. Greubel_, May 06 2022 *) %o A062032 (PARI) { for (n=1, 100, b=n^2 - n + 1; write("b062032.txt", n, " ", prod(k=0, n - 1, b + 2*k)) ) } \\ _Harry J. Smith_, Jul 30 2009 %o A062032 (SageMath) [(gamma(2*binomial(n+1,2) +1)*gamma(binomial(n,2) +1))/(2^n*gamma(binomial(n+1,2) +1)*gamma(2*binomial(n,2) +1)) for n in (1..30)] # _G. C. Greubel_, May 06 2022 %Y A062032 Cf. A062029, A062030, A062031. %K A062032 nonn %O A062032 1,2 %A A062032 _Amarnath Murthy_, Jun 02 2001 %E A062032 More terms from _Jason Earls_, Jun 08 2001