cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062035 Positive numbers whose product of digits is three times their sum.

This page as a plain text file.
%I A062035 #26 Jul 31 2022 07:49:51
%S A062035 66,159,167,176,195,235,253,325,333,352,519,523,532,591,617,671,716,
%T A062035 761,915,951,1168,1186,1236,1263,1326,1362,1618,1623,1632,1681,1816,
%U A062035 1861,2136,2163,2316,2361,2613,2631,3126,3162,3216,3261,3612,3621,6118
%N A062035 Positive numbers whose product of digits is three times their sum.
%H A062035 Harry J. Smith, <a href="/A062035/b062035.txt">Table of n, a(n) for n = 1..500</a>
%e A062035 235 belongs to the sequence as (2*3*5)/(2+3+5) = 30/10 = 3.
%t A062035 s3Q[n_]:=Module[{idn=IntegerDigits[n]},3Total[idn]==Times@@idn]; Select[Range[7000],s3Q]  (* _Harvey P. Dale_, Mar 20 2011 *)
%o A062035 (PARI) isok(n) = my(d=digits(n)); vecprod(d)==3*vecsum(d) \\ _Mohammed Yaseen_, Jul 29 2022
%o A062035 (Python)
%o A062035 from math import prod
%o A062035 def ok(n): d = list(map(int, str(n))); return prod(d) == 3*sum(d)
%o A062035 print([k for k in range(1, 7000) if ok(k)]) # _Michael S. Branicky_, Jul 29 2022
%Y A062035 Cf. A011540, A034710, A062034, A062036, A062382, A062037, A062384, A062040, A062041, A062043, A062045.
%K A062035 nonn,base,easy
%O A062035 1,1
%A A062035 _Amarnath Murthy_, Jun 27 2001
%E A062035 Corrected and extended by _Harvey P. Dale_ and Larry Reeves (larryr(AT)acm.org), Jul 04 2001
%E A062035 Offset corrected by _Mohammed Yaseen_, Jul 29 2022